

iSiLK
A graphical front-end for the SiLK tools

iSiLK was developed by the

Network Situational Awareness Group at CERT
 Software Engineering Institute

Carnegie Mellon University

Development & Deployment
Guide

for iSiLK version 0.1.2

November 2008

iSiLK User Guide
Copyright © 2007-2008 Carnegie Mellon University

iSiLK is released under the following licenses:

• GNU Public License (GPL) Rights pursuant to Version 2, June 1991

• Government Purpose License Rights (GPLR) pursuant to DFARS 252.225-7013

iSiLK and related applications are made available with NO WARRANTY.

ANY INFORMATION, MATERIALS, SERVICES, INTELLECTUAL PROPERTY
OR OTHER PROPERTY OR RIGHTS GRANTED OR PROVIDED BY
CARNEGIE MELLON UNIVERSITY PURSUANT TO THIS LICENSE
(HEREINAFTER THE "DELIVERABLES") ARE ON AN "AS-IS" BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESS OR IMPLIED AS TO ANY MATTER INCLUDING,
BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, INFORMATIONAL CONTENT,
NONINFRINGEMENT, OR ERROR-FREE OPERATION. CARNEGIE MELLON
UNIVERSITY SHALL NOT BE LIABLE FOR INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES, SUCH AS LOSS OF PROFITS OR INABILITY
TO USE SAID INTELLECTUAL PROPERTY, UNDER THIS LICENSE,
REGARDLESS OF WHETHER SUCH PARTY WAS AWARE OF THE
POSSIBILITY OF SUCH DAMAGES. LICENSEE AGREES THAT IT WILL NOT
MAKE ANY WARRANTY ON BEHALF OF CARNEGIE MELLON UNIVERSITY,
EXPRESS OR IMPLIED, TO ANY PERSON CONCERNING THE APPLICATION
OF OR THE RESULTS TO BE OBTAINED WITH THE DELIVERABLES
UNDER THIS LICENSE.

Licensee hereby agrees to defend, indemnify, and hold harmless Carnegie Mellon
University, its trustees, officers, employees, and agents from all claims or demands made
against them (and any related losses, expenses, or attorney's fees) arising out of, or relating
to Licensee's and/or its sub licensees' negligent use or willful misuse of or negligent
conduct or willful misconduct regarding the Software, facilities, or other rights or
assistance granted by Carnegie Mellon University under this License, including, but not
limited to, any claims of product liability, personal injury, death, damage to property, or
violation of any laws or regulations.

Carnegie Mellon University Software Engineering Institute authored documents are
sponsored by the U.S. Department of Defense under Contract F19628-00-C-0003.
Carnegie Mellon University retains copyrights in all material produced under this
contract. The U.S. Government retains a non-exclusive, royalty-free license to publish or
reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227.7013.

Table of Contents

Table of Contents.. 3 

Installing iSilk from Source.. 5 
Introduction ...5 

Installation Steps...5 
Step 1 – Install iSiLK Dependencies ... 5 
Step 2 – Install Python Source Code ... 7 
Step 3 – Test your SSH connection... 7 
Step 4 - Run iSiLK with Python.. 7 

Building a Windows Binary Distribution 9 
Introduction ...9 

Building the Windows Installer ..9 

Deployment Considerations 11 
Where iSiLK Stores Files ...11 

Local Configuration Files... 11 
Local Data Files ... 11 
Remote Data Files.. 11 

 Development and Deployment Guide | 5

Installing iSilk from Source

Introduction
This section includes information about running iSILK source directly from a
Python interpreter and for building a binary distribution from the source code. If
you’d like to do iSiLK development, including writing a plug-in, you’ll need to set
up a development environment following the steps in this guide. If all you need to
do is install iSiLK on your Windows desktop, see the iSiLK User’s Guide.

Although the instructions in this section are geared toward Windows, it should be
fairly straightforward to translate these instructions into the appropriate steps on a
Linux system or Mac OSX. iSiLK should run anywhere the Python packages it
depends on are available. The graphical user interface is based on wxPython,
which is in turn based on wxwidgets, a platform-independent graphical user
interface library that can be used to build applications on Linux under a variety of
windowing environments, under Mac OSX and of course, under Microsoft
Windows.

Installation Steps
Step 1 – Install iSiLK Dependencies

In order to run iSILK you’ll to install all of the following open source software.

1. Install Python 2.4
iSiLK is an application written in Python. The iSiLK sources should run in a
version 2.4 Python interpreter or newer, although it has only be tested under
Python 2.4. It has been tested on Windows with both ActivePython, a version of
Python maintained by ActiveState, a commercial software company that offers
various support packages, and with the version available from Python.org. They
may be downloaded from http://www.activestate.com/ and
http://www.python.org respectively. If you install the Python.org distribution on
Windows, you will also need to add C:\Python24 to your executable path. To do
this, go to the Windows Control Panel, Advanced Tab and select the
Environment Variables button. Select the Path System variable, choose Edit, and
add C:\Python24 at the end making sure to put a semicolon between it and any
preceding Path variables.

2. Install additional Python modules
Be sure to install the variants of modules intended for a Python 2.4 interpreter..
The module version numbers below correspond to versions of the modules that
have been used in testing. Later versions may work but these have not been
tested.

wxPython 2.8 (user interface library)

http://www.wxpython.org/download.php
wxPython2.8-win32-unicode-2.8.4.0-py24.exe

NumPy 1.2.0 or higher (required by MatPlotLib)

http://sourceforge.net/project/showfiles.php?group_id=1369&pa
ckage_id=175103

MatPlotLib 0.98.3 or higher (graphing)

http://sourceforge.net/project/showfiles.php?group_id=80706

In order to enable built-in ssh support, provide the following:

Paramiko 1.7.2 (client ssh library)

http://www.lag.net/paramiko/download/paramiko-1.7.2.zip

Unzip the paramiko package and then run the paramiko-
1.7.2.win32.exe executable file found in the dist folder inside the
paramikdo-1.7.2 folder

Pycrypto 2.0.1.win32-py2.4 (required by Paramiko)

A collection of cryptographic algorithms and protocols,
implemented for use from Python.

http://www.amk.ca/python/code/crypto
 (Main distribution site)

http://www.voidspace.org.uk/python/modules.shtml
 (Windows binary distribution)

In order for Pycrypto and Paramiko to work, you will need a standard Unix key
pair. You can use an existing key pair or you can run ssh-keygen on a Unix
machine to produce a new key pair. Paramiko expects a private key using the
standard the Unix key format used by opensssh. Note that some Windows ssh
client applications use a different format, but allow you to import and export
openssh format keys. If you have a key pair that you are already using for
something else, you may use it for communication between iSiLK and SiLK.

NOTE: The Windows version of Paramiko may not work with all key
types supported by openssh. In particular, version 1.7.2 does not support
RSA keys (the openssh default), so you should be sure to specify the key
type as DSA instead.

In either case, the public key should be appended to the authorized keys file on
the Unix machine where the Silk Toolset is running, (usually in .ssh directory
under home). The private key should reside on the windows machine in a known
location to be used later in configuring iSiLK.

3. Verify that you can run Python and load these modules.
Open a Command Prompt run python

 Development and Deployment Guide | 7

C:\> cd c:\
C:\> python

From the python prompt, type the following, one after the other:
>>> import wx
>>> import matplotlib
>>> import numpy
>>> import paramiko

If all is well, these should all return without displaying an error message.

Step 2 – Install Python Source Code

After installing the prerequisites install the Python code for iSiLK. Simply create
a directory for the source code and unpack it. For example, on Windows:
C:\> cd c:\
C:\> pkunzip isilk.zip

This will create a directory with the contents of the distribution.

Step 3 – Test your SSH connection

Before running iSiLK for the first time make sure that you can invoke SiLK tools
using a standard command-line ssh client. This will allow you verify that SiLK is
installed properly, that your PATH is properly set, and that the SSH setup is
correct. For example, run:
C:\> sshclient.exe –i id_mykey me@host rwfilter –help

You can then verify rwfilter runs and that its output is the same as you see when
you log with an ssh console application and run that command directly at the
Unix command prompt.

Step 4 - Run iSiLK with Python

Launching iSiLK is simply a matter of running “isilk.py” with your python
interpreter. For example, on a Windows host this may look something like:

C:\isilkdir> python isilk.py [options]

See the iSiLK User’s Guide for details on running iSiLK for the first time with
your SiLK installation.

 Development and Deployment Guide | 9

Building a Windows Binary Distribution

Introduction
The following steps are required to create a binary distribution for Windows. All
of the following should be done on an installation of Windows XP.

Building the Windows Installer
1. Install the py2exe tool.

This will allow you to create a directory that contains a standalone executable and
the supporting files that will be installed in the "Program Files" directory.

 Py2Exe 0.6.6 (required to build .exe)

http://sourceforge.net/project/showfiles.php?group_id=15583

2. Run py2exe to generate the "dist" directory
C:\> cd isilk

C:\isilk> python setup-windows.py py2exe

3. Install the free version of Advanced Installer:

 http://www.advancedinstaller.com/downloading.html

4. Update the version number

If the version number has changed, choose “Product Details” from the “Project
Settings” from the menu displayed to the left of the main window and update the
“Product Version Field”. It is recommended you respond “No” the dialog box
that asks whether to create a new Product Code, since iSiLK is not designed to
support side-by-side installs of multiple versions of the application.

5. Generate the "isilk.msi" file using Advanced Installer:
The source distribution contains an Advanced Installer project file "isilk.aip".
After installing the Installer, open it and choose File Open and select the isilk.aip
file. Then select the “File and Folders” view in the “Project Definition” menu
displayed to the left of the application window. This will show you all the files and
sub-directories that will be copied to the installation directory when iSiLK is
installed. You’ll want to delete the existing contents of that directory before
starting.

Then, choose the “Application Folder” in the tree of folders displayed, and then
add contents to that folder:

• Select “Add Files” and add all the files in the dist/ directory to the top-
level “Application Folder” for the project.

• For each folder in the dist/ directory, use “Add Folder” and add this
folder and its contents to the to the “Application Folder”.

Finally, build the .msi file by selecting “Build” from the toolbar or the “Project”
menu.

You should be able to run "isilk.msi" on any Windows XP or Vista system. The
installer will install files in "Program Files", and create shortcuts for isilk.exe on
your Start Menu.

NOTE: You will need to make sure the dll MSVCP71.dll is installed on
your target system. This is generally copied to c:\Windows\System32 as
part of the installation process of many Microsoft applications. It’s also
distributed with most of the Microsoft developer tools. Before
redistributing this file or any other file from Microsoft, be sure to consult
the appropriate Microsoft license agreement.

 Development and Deployment Guide | 11

Deployment Considerations

Where iSiLK Stores Files
Local Configuration Files

The first time you run iSiLK it will create the following configuration files:
C:\Documents and Settings\JDoe\Application Data\iSiLK\silk.conf

C:\Documents and Settings\JDoe\Application Data\iSiLK\library.dat

Local Data Files

Every active problem set corresponds to a directory on the user’s local system in
his documents directory. By default on Windows, problem sets are stored in the
“isilk” sub-directory under “My Documents”. This directly will typically look
something like:

C:\Documents and Settings\JDoe\My Documents\isilk

iSiLK will create a subdirectory in this location for each problem set that has been
saved. That problem set directory contains ascii versions of any of the files you’ve
chosen to download, as well as a graphics file corresponding to every rendered
graph in the problem set. It also contains an xml file, index.xml that describes the
problem set and includes various iSiLK-specific meta-information. If you list a
problem set directory on Windows it will look something like:

 C:\Documents and Settings\JDoe\My Documents\isilk\jvt0.isilk>dir
 Volume in drive C has no label.
 Volume Serial Number is E089-36DF

 Directory of C:\Documents and Settings\JDoe\My Documents\isilk\jvt0.isilk

 01/30/2008 06:30 PM <DIR> .
 01/30/2008 06:30 PM <DIR> ..
 01/30/2008 06:30 PM 9,449 Graph_-_Bytes-0l4p.png
 01/30/2008 06:29 PM 9,665 index.xml
 01/30/2008 06:28 PM 429,760 Untitled_Count_by_sport-56eu.asc
 01/30/2008 06:29 PM 12,604,326 Untitled_Query-f39t.rwf.asc
 01/30/2008 06:29 PM 12,604,326 Untitled_Refinement-srgj.rwf.asc
 5 File(s) 25,657,526 bytes
 2 Dir(s) 29,593,288,704 bytes free

Remote Data Files

The output directory that SiLK uses to store your remote results is configurable.
For each local problem set directory iSiLK creates a corresponding remote
problem set directory. The problem set directory includes a binary and ascii
version of every output file generated during the course of analysis.

Note that it is user’s responsibility to explicitly delete any remote data after it is no
longer needed since iSiLK does not currently include features for deleting and
archiving data.

