PySiLK Reference Guide
(SiLK-3.24.0)

CERT Software Automation Product Development
(©2008-2025 Carnegie Mellon University

License available in Appendix A

The canonical location for this handbook is
https://tools.netsa.cert.org/silk /pysilk.pdf

July 17, 2025

https://tools.netsa.cert.org/silk/pysilk.pdf

PySiLK Reference Guide

SiLK 3.24

Copyright 2025 Carnegie Mellon University.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MER-
CHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Licensed under a GNU GPL 2.0-style license, please see LICENSE.txt or contact permission@sei.cmu.edu
for full terms.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

This Software includes and/or makes use of Third-Party Software each subject to its own license.
DM25-0915

2 SiLK-3.24.0

Introduction

The PySiLK Reference Guide contains the pysilk(3) and silkpython(3) manual pages in a single document.

The manual page for every SiLK tool is available in the SiLK reference guide. The SiLK Analysis Handbook
provides both a tutorial for learning about the tools and examples of how they can be used in analyzing flow
data. See the SiLK Installation Handbook for instructions on installing SiLK at your site.

Introduction PySiLK Reference Guide

4 SiLK-3.24.0

PySiLK

Silk in Python

DESCRIPTION

This document describes the features of PySiLK, the SiLK Python extension. It documents the objects
and methods that allow one to read, manipulate, and write SiLK Flow records, IPsets, Bags, and Prefix
Maps (pmaps) from within python(1). PySiLK may be used in a stand-alone Python script or as a plug-in
from within the SiLK tools rwfilter(1), rwcut(1), rwgroup(1), rwsort(1), rwstats(1), and rwuniq(1).
This document describes the objects and methods that PySiLK provides; the details of using those from
within a plug-in are documented in the silkpython(3) manual page.

The SiLK Python extension defines the following objects and modules:

IPAddr object
Represents an IP Address.

IPv4Addr object
Represents an IPv4 Address.

IPv6Addr object
Represents an IPv6 Address.

IPWildcard object
Represents CIDR blocks or SiLK IP wildcard addresses.

IPSet object
Represents a SiLK IPset.

PrefixMap object

Represents a SiLK Prefix Map.
Bag object

Represents a SiILK Bag.

TCPFlags object
Represents TCP flags.

PySiLK PySiLK Reference Guide

RWRec object
Represents a SiLK Flow record.

SilkFile object

Represents a channel for writing to or reading from SiLK Flow files.

FGlob object

Allows retrieval of filenames in a SiLK data store. See also the silk.site module.

silk.site module
Defines several functions that relate to the SiLK site configuration and allow iteration over the files in
a SiLK data store.

silk.plugin module
Defines functions that may only be used in SiLK Python plug-ins.

The SiLK Python extension provides the following functions:

silk.get_configuration(name=None)

When name is None, return a dictionary whose keys specify aspects of how SiLK was compiled. When
name is provided, return the dictionary value for that key, or None when name is an unknown key.
The dictionary’s keys and their meanings are:

COMPRESSION_METHODS
A list of strings specifying the compression methods that were compiled into this build of SiLK.
The list will contain one or more of NO_COMPRESSION, ZLIB, LZ01X, and/or SNAPPY.

INITIAL_TCPFLAGS_ENABLED
True if SiLK was compiled with support for initial TCP flags; False otherwise.

IPV6_ENABLED

True if SiLK was compiled with IPv6 support; False otherwise.
SILK_VERSION

The version of SiLK linked with PySiLK, as a string.
TIMEZONE_SUPPORT

The string UTC if SiILK was compiled to use UTC, or the string local if SiLK was compiled to
use the local timezone.

Since SiLK 3.8.1.

silk.ipv6_enabled()
Return True if SiLK was compiled with IPv6 support, False otherwise.

silk.initial_tcpflags_enabled()
Return True if SiLK was compiled with support for initial TCP flags, False otherwise.

silk.init_country_codes(filename=None)

Initialize PySiLK’s country code database. filename should be the path to a country code prefix map, as
created by rwgeoip2ccmap(1). If filename is not supplied, SILK will look first for the file specified by
$SILK_COUNTRY_CODES, and then for a file named country_codes.pmap in $SILK_PATH /share/silk,
$SILK_PATH/share, /usr/local/share/silk, and /usr/local/share. (The latter two assume that SiLK
was installed in /usr/local.) Will throw a RuntimeError if loading the country code prefix map fails.

silk.silk_version()
Return the version of SiLK linked with PySiLK, as a string.

6 SiLK-3.24.0

PySiLK Reference Guide PySiLK

IPAddr Object

An IPAddr object represents an IPv4 or IPv6 address. These two types of addresses are represented by
two subclasses of IPAddr: IPv4Addr and IPv6Addr.

class silk.IPAddr(address)

The constructor takes a string address, which must be a string representation of either an IPv4 or IPv6
address, or an IPAddr object. IPv6 addresses are only accepted if silk.ipv6_enabled() returns True.
The IPAddr object that the constructor returns will be either an IPv4Addr object or an IPv6Addr
object.

For compatibility with releases prior to SiLK 2.2.0, the IPAddr constructor will also accept an integer
address, in which case it converts that integer to an IPv4Addr object. This behavior is deprecated.
Use the IPv4Addr and IPv6Addr constructors instead.

Examples:

>>> addrl = IPAddr(’192.160.1.1°)

>>> addr2 = IPAddr(°2001:db8::1428:57ab’)

>>> addr3 = IPAddr(’::ffff:12.34.56.787)

>>> addr4 = IPAddr(addri)

>>> addr5 = IPAddr(addr2)

>>> addr6 = IPAddr (0x10000000) # Deprecated as of SilK 2.2.0

Supported operations and methods:

Inequality Operations

In all the below inequality operations, whenever an IPv4 address is compared to an IPv6 address, the
IPv4 address is converted to an IPv6 address before comparison. This means that IPAddr(”0.0.0.0”)
== IPAddr(”::ffff:0.0.0.0”).

addrl == addr2
Return True if addr! is equal to addr2; False otherwise.

addrl != addr2
Return False if addrl is equal to addr2; True otherwise.

addrl < addr2
Return True if addri is less than addr?2; False otherwise.

addrl <= addr2
Return True if addri is less than or equal to addr2; False otherwise.

addrl >= addr2
Return True if addri is greater than or equal to addr2; False otherwise.

addrl > addr2
Return True if addr! is greater than addr?2; False otherwise.

addr.is_ipv6()

Return True if addr is an IPv6 address, False otherwise.

addr.isipv6()
(DEPRECATED in SiLK 2.2.0) An alias for is_ipv6().

SiLK-3.24.0 7

PySiLK PySiLK Reference Guide

addr.to_ipv6()
If addr is an IPv6Addr, return a copy of addr. Otherwise, return a new IPv6Addr mapping addr
into the ::ffff:0:0/96 prefix.

addr.to_ipv4()
If addr is an IPv4Addr, return a copy of addr. If addr is in the :ffff:0:0/96 prefix, return a new
IPv4Addr containing the IPv4 address. Otherwise, return None.

int(addr)
Return the integer representation of addr. For an IPv4 address, this is a 32-bit number. For an IPv6
address, this is a 128-bit number.

str(addr)

Return a human-readable representation of addr in its canonical form.

addr.padded()
Return a human-readable representation of addr which is fully padded with zeroes. With IPv4, it
will return a string of the form ”xxx.xxx.xxx.xxx”. With IPv6, it will return a string of the form
7 XXX K XXKK XXX KX KKK XK XK XXX XXX XXXX

addr.octets()
Return a tuple of integers representing the octets of addr. The tuple’s length is 4 for an IPv4 address
and 16 for an IPv6 address.

addr.mask(mask)
Return a copy of addr masked by the IPAddr mask.
When both addresses are either IPv4 or IPv6, applying the mask is straightforward.

If addr is IPv6 but mask is IPv4, mask is converted to IPv6 and then the mask is applied. This may
result in an odd result.

If addr is IPv4 and mask is IPv6, addr will remain an IPv4 address if masking mask with
::££££:0000:0000 results in ::££££:0000:0000, (namely, if bytes 10 and 11 of mask are OxFFFF).
Otherwise, addr is converted to an IPv6 address and the mask is performed in IPv6 space, which may
result in an odd result.

addr.mask_prefix(prefiz)
Return a copy of addr masked by the high prefix bits. All bits below the prefizth bit will be set to
zero. The maximum value for prefiz is 32 for an IPv4Addr, and 128 for an IPv6Addr.
addr.country_code()

Return the two character country code associated with addr. If no country code is associated with addr,
return None. The country code association is initialized by the silk.init_country_codes() function. If
init_country_codes() is not called before calling this method, it will act as if init_country_codes()
was called with no argument.

IPv4Addr Object

An TPv4Addr object represents an IPv4 address. IPv4Addr is a subclass of IPAddr, and supports all
operations and methods that IPAddr supports.

8 SiLK-3.24.0

PySiLK Reference Guide PySiLK

class silk.IPv4Addr(address)

The constructor takes a string address, which must be a string representation of IPv4 address, an
IPAddr object, or an integer. A string will be parsed as an IPv4 address. An IPv4Addr object will
be copied. An IPv6Addr object will be converted to an IPv4 address, or throw a ValueError if the
conversion is not possible. A 32-bit integer will be converted to an IPv4 address.

Examples:

>>> addrl = IPv4Addr(’192.160.1.1°)

>>> addr2 = IPv4Addr (IPAddr(’::ffff:12.34.56.787))
>>> addr3 = IPv4Addr(addril)
>>> addr4 = IPv4Addr (0x10000000)

IPv6Addr Object

An IPv6Addr object represents an IPv6 address. IPv6Addr is a subclass of IPAddr, and supports all
operations and methods that IPAddr supports.

class silk.IPv6Addr(address)

The constructor takes a string address, which must be a string representation of either an IPv6 address,
an TPAddr object, or an integer. A string will be parsed as an IPv6 address. An IPv6Addr object
will be copied. An IPv4Addr object will be converted to an IPv6 address. A 128-bit integer will be
converted to an IPv6 address.

Examples:

>>> addrl = IPAddr(’2001:db8::1428:57ab’)

>>> addr2 = IPv6Addr(IPAddr(’192.160.1.1°))
>>> addr3 = IPv6Addr(addri)
>>> addr4 = IPv6Addr (0x100000000000000000000000)

IPWildcard Object

An IPWildcard object represents a range or block of IP addresses. The IPWildcard object handles iteration
over IP addresses with for x in wildcard.

class silk.IPWildcard(wildcard)

The constructor takes a string representation wildcard of the wildcard address. The string wildcard can
be an IP address, an IP with a CIDR notation, an integer, an integer with a CIDR designation, or an
entry in SiLK wildcard notation. In SiLK wildcard notation, a wildcard is represented as an IP address
in canonical form with each octet (IPv4) or hexadectet (IPv6) represented by one of following: a value,
a range of values, a comma separated list of values and ranges, or the character 'x’ used to represent
the entire octet or hexadectet. IPv6 wildcard addresses are only accepted if silk.ipv6_enabled() returns
True. The wildcard element can also be an IPWildcard, in which case a duplicate reference is returned.

Examples:
>>> a = IPWildcard(’1.2.3.0/24°)
>>> b = IPWildcard(°££80::/16°)

SiLK-3.24.0 9

PySiLK PySiLK Reference Guide

>>> ¢ = IPWildcard(’1.2.3.47)

>>> d = IPWildcard(’::ffff:0102:0304’)
>>> e = IPWildcard(’16909056°)

>>> f = IPWildcard(’16909056/247)

>>> g = IPWildcard(’1.2.3.x’°)

>>> h = IPWildcard(’1:2:3:4:5:6:7.x’)
>>> i = IPWildcard(’1.2,3.4,5.6,7’
>>> j = IPWildcard(’1.2.3.0-255’)

>>> k = IPWildcard(’::2-4’)

>>> 1 = IPWildcard(’1-2:3-4:5-6:7-8:9-a:b-c:d-e:0-ffff’)
>>> m = IPWildcard(a)

Supported operations and methods:

addr in wildcard

Return True if addr is in wildcard, False otherwise.

addr not in wildcard

Return False if addr is in wildcard, True otherwise.

string in wildcard

Return the result of IPAddr(string) in wildcard.

string not in wildcard
Return the result of IPAddr(string) not in wildcard.

wildcard.is_ipv6()

Return True if wildcard contains IPv6 addresses, False otherwise.

str(wildcard)

Return the string that was used to construct wildcard.

IPSet Object

An TPSet object represents a set of IP addresses, as produced by rwset(1) and rwsetbuild(1). The IPSet
object handles iteration over IP addresses with for x in set, and iteration over CIDR blocks using for
in set.cidr_iter().

In the following documentation, and ip_iterable can be any of:

e an IPAddr object representing an IP address

e the string representation of a valid IP address

an IPWildcard object

the string representation of an IPWildcard

an iterable of any combination of the above

another IPSet object

10 SiLK-3.24.0

PySiLK Reference Guide PySiLK

class silk.IPSet([ip_iterable])
The constructor creates an empty [Pset. If an ip_iterable is supplied as an argument, each member of
ip_iterable will be added to the IPset.

Other constructors, all class methods:

silk.IPSet.load (path)
Create an IPSet by reading a SiLK IPset file. path must be a valid location of an IPset.

Other class methods:

silk.IPSet.supports_ipv6()

Return whether this implementation of IPsets supports IPv6 addresses.

Supported operations and methods:

In the lists of operations and methods below,

set is an IPSet object

e addr can be an IPAddr object or the string representation of an IP address.

set2 is an IPSet object. The operator versions of the methods require an IPSet object.

ip_iterable is an iterable over IP addresses as accepted by the IPSet constructor. Consider ip_iterable
as creating a temporary IPSet to perform the requested method.

The following operations and methods do not modify the IPSet:

set.cardinality ()

Return the cardinality of set.

len(set)
Return the cardinality of set. In Python 2.x, this method will raise OverflowError if the number of
IPs in the set cannot be represented by Python’s Plain Integer type--that is, if the value is larger than
sys.maxint. The cardinality() method will not raise this exception.

set.is_ipv6()

Return True if set is a set of IPv6 addresses, and False if it a set of IPv4 addresses. For the purposes
of this method, IPv4-in-IPv6 addresses (that is, addresses in the :ffff:0:0/96 prefix) are considered
IPv6 addresses.

addr in set

Return True if addr is a member of set; False otherwise.

addr not in set

Return False if addr is a member of set; True otherwise.

set.copy()
Return a new IPSet with a copy of set.

SiLK-3.24.0 11

PySiLK PySiLK Reference Guide

set.issubset (ip_iterable)

set <= set2

Return True if every IP address in set is also in set2. Return False otherwise.
set.issuperset (ip_iterable)

set >= set2

Return True if every IP address in set2 is also in set. Return False otherwise.
set.union(ip_iterable[, ...])

set | other | ...

Return a new IPset containing the IP addresses in set and all others.
set.intersection(ip_iterable], ...])
set & other & ...

Return a new IPset containing the IP addresses common to set and others.
set.difference(ip_iterable], ...])

set - other - ...

Return a new IPset containing the IP addresses in set but not in others.
set.symmetric_difference(ip_iterable)

set = other

Return a new IPset containing the IP addresses in either set or in other but not in both.
set.isdisjoint (ép_iterable)

Return True when none of the IP addresses in ip_iterable are present in set. Return False otherwise.

set.cidr_iter()

Return an iterator over the CIDR blocks in set. Each iteration returns a 2-tuple, the first element of
which is the first IP address in the block, the second of which is the prefix length of the block. Can be
used as for (addr, prefix) in set.cidr_iter().

set.save(filename, compression=DEFAULT)

Save the contents of set in the file filename. The compression determines the compression method
used when outputting the file. Valid values are the same as those in silk.silkfile_open().

The following operations and methods will modify the IPSet:

set.add(addr)

Add addr to set and return set. To add multiple IP addresses, use the add_range() or update()
methods.

set.discard(addr)

Remove addr from set if addr is present; do nothing if it is not. Return set. To discard multiple TP
addresses, use the difference_update() method. See also the remove() method.

set.remove(addr)

Similar to discard(), but raise KeyError if addr is not a member of set.

12 SiLK-3.24.0

PySiLK Reference Guide PySiLK

set.pop()
Remove and return an arbitrary address from set. Raise KeyError if set is empty.

set.clear()

Remove all IP addresses from set and return set.

set.convert(version)

Convert set to an IPv4 IPset if version is 4 or to an IPv6 IPset if version is 6. Return set. Raise
ValueError if version is not 4 or 6. If version is 4 and set contains IPv6 addresses outside of the
::ffff:0:0/96 prefix, raise ValueError and leave set unchanged.

set.add_range(start, end)

Add all IP addresses between start and end, inclusive, to set. Raise ValueError if end is less than
start.

set.update(ip_iterable|, ...])

set |= other | ...

Add the IP addresses specified in others to set; the result is the union of set and others.
set.intersection_update(ip_iterable], ...])

set &= other & ...

Remove from set any IP address that does not appear in others; the result is the intersection of set
and others.

set.difference_update(ip_iterable], ...])

set -= other | ...

Remove from set any IP address found in others; the result is the difference of set and others.
set.symmetric_difference_update(ip_iterable)

set = other

Update set, keeping the IP addresses found in set or in other but not in both.

RWRec Object

An RWRec object represents a SiILK Flow record.

class silk. RWRec([rec/, [field=value],...)

This constructor creates an empty RWRec object. If an RWRec rec is supplied, the constructor
will create a copy of it. The variable rec can be a dictionary, such as that supplied by the as_dict()
method. Initial values for record fields can be included.

Example:

>>> recA = RWRec(input=10, output=20)
>>> recB = RWRec(recA, output=30)
>>> (recA.input, recA.output)

(10, 20)

>>> (recB.input, recB.output)

(10, 30)

SiLK-3.24.0 13

PySiLK PySiLK Reference Guide

Instance attributes:

Accessing or setting attributes on an RWRec whose descriptions mention functions in the silk.site module
causes the silk.site.init_site() function to be called with no argument if it has not yet been called successfully-
--that is, if silk.site.have_site_config() returns False.

rec.application

The service port of the flow rec as set by the flow meter if the meter supports it, a 16-bit unsigned
integer. The yaf(1) flow meter refers to this value as the appLabel. The default application value is 0.

rec.bytes

The count of the number of bytes in the flow rec, a 64-bit unsigned integer. The default bytes value is
0. Prior to SiLK 3.23, rec.bytes was a 32-bit unsigned integer.

rec.classname

(READ ONLY) The class name assigned to the flow rec, a string. This value is first member of the
tuple returned by the rec.classtype attribute, which see.

rec.classtype

A 2-tuple containing the classname and the typename of the flow rec. Getting the value returns the
result of §77. If that function throws an error, the result is a 2-tuple containing the string ? and a string
representation of rec.classtype_id. Setting the value to (class,type) sets rec.classtype_id to the result of
§77. If that function throws an error because the (class,type) pair is unknown, rec is unchanged and
ValueError is thrown.

rec.classtype_id

The ID for the class and type of the flow rec, an 8-bit unsigned integer. The default classtype_id value
is 255. Changes to this value are reflected in the rec.classtype attribute. The classtype_id attribute
may be set to a value that is considered invalid by the silk.site.

rec.dip
The destination IP of the flow rec, an IPAddr object. The default dip value is IPAddr(’0.0.0.0%). May
be set using a string containing a valid IP address.

rec.dport

The destination port of the flow rec, a 16-bit unsigned integer. The default dport value is 0. Since the
destination port field is also used to store the values for the ICMP type and code, setting this value
may modify rec.icmptype and rec.icmpcode.

rec.duration

The duration of the flow rec, a datetime.timedelta object. The default duration value is 0. Changing
the rec.duration attribute will modify the rec.etime attribute such that (rec.etime - rec.stime) == the
new rec.duration. The maximum possible duration is datetime.timedelta(milliseconds=0xfIffff{f). See
also rec.duration_secs.

rec.duration_secs

The duration of the flow rec in seconds, a float that includes fractional seconds. The default dura-
tion_secs value is 0. Changing the rec.duration_secs attribute will modify the rec.etime attribute in the
same way as changing rec.duration. The maximum possible duration_secs value is 4294967.295.

14 SiLK-3.24.0

PySiLK Reference Guide PySiLK

rec.etime

The end time of the flow rec, a datetime.datetime object. The default etime value is the UNIX epoch
time, datetime.datetime(1970,1,1,0,0). Changing the rec.etime attribute modifies the flow record’s
duration. If the new duration would become negative or would become larger than RWRec supports,
a ValueError will be raised. See also rec.etime_epoch _secs.

rec.etime_epoch_secs

The end time of the flow rec as a number of seconds since the epoch time, a float that includes
fractional seconds. Epoch time is 1970-01-01 00:00:00 UTC. The default etime_epoch_secs value is 0.
Changing the rec.etime_epoch_secs attribute modifies the flow record’s duration. If the new duration
would become negative or would become larger than RWRec supports, a ValueError will be raised.

rec.initial_tcpflags

The TCP flags on the first packet of the flow rec, a TCPFlags object. The default initial_tcpflags
value is None. The rec.initial_tcpflags attribute may be set to a new TCPFlags object, or a string
or number which can be converted to a TCPFlags object by the TCPFlags() constructor. Set-
ting rec.initial_tcpflags when rec.session_tcpflags is None sets the latter to TCPFlags(”). Setting
rec.initial_tcpflags or rec.session_tcpflags sets rec.tcpflags to the binary OR of their values. Trying to
set rec.initial_tcpflags when rec.protocol is not 6 (TCP) will raise an AttributeError.

rec.icmpcode

The ICMP code of the flow rec, an 8-bit unsigned integer. The default icmpcode value is 0. The value
is only meaningful when rec.protocol is ICMP (1) or when rec.is_ipv6() is True and rec.protocol is
ICMPv6 (58). Since a record’s ICMP type and code are stored in the destination port, setting this
value may modify rec.dport.

rec.icmptype

The ICMP type of the flow rec, an 8-bit unsigned integer. The default icmptype value is 0. The value
is only meaningful when rec.protocol is ICMP (1) or when rec.is_ipv6() is True and rec.protocol is
ICMPv6 (58). Since a record’s ICMP type and code are stored in the destination port, setting this
value may modify rec.dport.

rec.input
The SNMP interface where the flow rec entered the router or the vlanld if the packing tools are
configured to capture it (see sensor.conf(5)), a 32-bit unsigned integer. The default input value is 0.
Prior to SiLK 3.23, rec.input was a 16-bit unsigned integer.

rec.nhip
The next-hop IP of the flow rec as set by the router, an IPAddr object. The default nhip value is
IPAddr(’0.0.0.0°). May be set using a string containing a valid TP address.

rec.output

The SNMP interface where the flow rec exited the router or the postVlanld if the packing tools are
configured to capture it (see sensor.conf(5)), a 32-bit unsigned integer. The default output value is
0. Prior to SiLK 3.23, rec.output was a 16-bit unsigned integer.

rec.packets

The packet count for the flow rec, a 64-bit unsigned integer. The default packets value is 0. Prior to
SiLK 3.23, rec.packets was a 32-bit unsigned integer.

SiLK-3.24.0 15

PySiLK PySiLK Reference Guide

rec.protocol

The IP protocol of the flow rec, an 8-bit unsigned integer. The default protocol value is 0. Setting
rec.protocol to a value other than 6 (TCP) causes rec.initial_tcpflags and rec.session_tepflags to be set
to None.

rec.sensor

The name of the sensor where the flow rec was collected, a string. Getting the value returns the
result of §77. If that function throws an error, the result is a string representation of rec.sensor_id
or the string ? when sensor_id is 65535. Setting the value to sensor_name sets rec.sensor_id to the
result of §77. If that function throws an error because sensor_name is unknown, rec is unchanged and
ValueError is thrown.

rec.sensor_id

The ID of the sensor where the flow rec was collected, a 16-bit unsigned integer. The default sensor_id
value is 65535. Changes to this value are reflected in the rec.sensor attribute. The sensor_id attribute
may be set to a value that is considered invalid by silk.site.

rec.session_tcpflags

The union of the flags of all but the first packet in the flow rec, a TCPFlags object. The default ses-
sion_tcpflags value is None. The rec.session_tcpflags attribute may be set to a new TCPFlags object,
or a string or number which can be converted to a TCPFlags object by the TCPFlags() constructor.
Setting rec.session_tcpflags when rec.initial tcpflags is None sets the latter to TCPFlags(”). Setting
rec.initial_tcpflags or rec.session_tcpflags sets rec.tepflags to the binary OR of their values. Trying to
set rec.session_tepflags when rec.protocol is not 6 (TCP) will raise an AttributeError.

rec.sip

The source IP of the flow rec, an IPAddr object. The default sip value is IPAddr(’0.0.0.0’). May be
set using a string containing a valid IP address.

rec.sport

The source port of the flow rec, an unsigned integer. The default sport value is 0.

rec.stime

The start time of the flow rec, a datetime.datetime object. The default stime value is the UNIX
epoch time, datetime.datetime(1970,1,1,0,0). Modifying the rec.stime attribute will modify the flow’s
end time such that rec.duration is constant. The maximum possible stime is 2038-01-19 03:14:07 UTC.
See also rec.etime_epoch_secs.

rec.stime_epoch_secs

The start time of the flow rec as a number of seconds since the epoch time, a float that includes
fractional seconds. Epoch time is 1970-01-01 00:00:00 UTC. The default stime_epoch_secs value is 0.
Changing the rec.stime_epoch_secs attribute will modify the flow’s end time such that rec.duration is
constant. The maximum possible stime_epoch_secs is 2147483647 (2"31-1).

rec.tcpflags

The union of the TCP flags of all packets in the flow rec, a TCPFlags object. The default tcpflags
value is TCPFlags(’ ’). The rec.tcpflags attribute may be set to a new TCPFlags object, or a string
or number which can be converted to a TCPFlags object by the TCPFlags() constructor. Setting
rec.tcpflags sets rec.initial_tcpflags and rec.session_tcpflags to None. Setting rec.initial_tcpflags or
rec.session_tcpflags changes rec.tcpflags to the binary OR of their values.

16 SiLK-3.24.0

PySiLK Reference Guide PySiLK

rec.timeout _killed
Whether the flow rec was closed early due to timeout by the collector, a boolean. The default time-
out_killed value is False.

rec.timeout_started
Whether the flow rec is a continuation from a timed-out flow, a boolean. The default timeout_started
value is False.

rec.typename
(READ ONLY) The type name of the flow rec, a string. This value is second member of the tuple
returned by the rec.classtype attribute, which see.

rec.uniform_packets

Whether the flow rec contained only packets of the same size, a boolean. The default uniform_packets
value is False.

Supported operations and methods:

rec.is_icmp()
Return True if the protocol of rec is 1 (ICMP) or if the protocol of rec is 58 (ICMPv6) and rec.is_ipv6()
is True. Return False otherwise.

rec.is_ipv6()

Return True if rec contains IPv6 addresses, False otherwise.

rec.is_web()
Return True if rec can be represented as a web record, False otherwise. A record can be represented
as a web record if the protocol is TCP (6) and either the source or destination port is one of 80, 443,
or 8080.

rec.as_dict()
Return a dictionary representing the contents of rec. Implicitly calls silk.site.init_site() with no argu-
ments if silk.site.have_site_config() returns False.

rec.to_ipv4()

Return a new copy of rec with the IP addresses (sip, dip, and nhip) converted to IPv4. If any of these
addresses cannot be converted to IPv4, (that is, if any address is not in the ::ffff:0:0/96 prefix) return
None.

rec.to_ipv6()

Return a new copy of rec with the IP addresses (sip, dip, and nhip) converted to IPv6. Specifically,
the function maps the IPv4 addresses into the :ffff:0:0/96 prefix.

str(rec)

Return the string representation of rec.as_dict().

recl == rec2

Return True if reci is structurally equivalent to rec2. Return False otherwise.

recl '= rec2

Return True if rec is not structurally equivalent to rec2 Return False otherwise.

SiLK-3.24.0 17

PySiLK PySiLK Reference Guide

SilkFile Object

A SilkFile object represents a channel for writing to or reading from SiLK Flow files. A SiLK file open for
reading can be iterated over using for rec in file.

Creation functions:

silk.silkfile_open(filename, mode, compression=DEFAULT, notes=[], invocations=[))

18

This function takes a filename, a mode, and a set of optional keyword parameters. It returns a SilkFile
object. The mode should be one of the following constant values:

silk. READ

Open file for reading
silk. WRITE

Open file for writing
silk. APPEND

Open file for appending

The filename should be the path to the file to open. A few filenames are treated specially. The filename
stdin maps to the standard input stream when the mode is READ. The filenames stdout and stderr
map to the standard output and standard error streams respectively when the mode is WRITE. A
filename consisting of a single hyphen (-) maps to the standard input if the mode is READ, and to
the standard output if the mode is WRITE.

The compression parameter may be one of the following constants. (This list assumes SiLK was
built with the required libraries. To check which compression methods are available at your site, see
silk.get_configuration(” COMPRESSION_METHODS")).

silk. DEFAULT
Use the default compression scheme compiled into SiLK.
silk. NO_COMPRESSION
Use no compression.
silk.ZLIB
Use zlib block compression (as used by gzip(1)).
silk. LZO1X
Use lzolx block compression.
silk. SNAPPY

Use snappy block compression.

If notes or invocations are set, they should be list of strings. These add annotation and invocation
headers to the file. These values are visible by the rwfileinfo(1) program.

Examples:

>>> myinputfile = silkfile_open(’/path/to/file’, READ)
>>> myoutputfile = silkfile_open(’/path/to/file’, WRITE,
compression=LZ01X,
notes=[’My output file’,
’another annotation’])

SiLK-3.24.0

PySiLK Reference Guide PySiLK

silk.silkfile_fdopen(fileno, mode, filename=None, compression=DEFAULT, notes=[], invoca-
tions=][])

This function takes an integer file descriptor, a mode, and a set of optional keyword parameters. It
returns a SilkFile object. The filename parameter is used to set the value of the name attribute of
the resulting object. All other parameters work as described in the silk.silkfile_open() function.

Deprecated constructor:

class silk.SilkFile(filename, mode, compression=DEFAULT, notes=[], invocations=][])

This constructor creates a SilkFile object. The parameters are identical to those used by the silk-
file_open() function. This constructor is deprecated as of SiLK 3.0.0. For future compatibility, please
use the silkfile_open() function instead of the SilkFile() constructor to create SilkFile objects.

Instance attributes:

file.name

The filename that was used to create file.

file.mode
The mode that was used to create file. Valid values are READ, WRITE, or APPEND.

Instance methods:

file.read()

Return an RWRec representing the next record in the SilkFile file. If there are no records left in the
file, return None.

file.write(rec)

Write the RWRec rec to the SilkFile file. Return None.

file.next()

A SilkFile object is its own iterator. For example, iter(file) returns file. When the SilkFile is used
as an iterator, the next() method is called repeatedly. This method returns the next record, or raises
Stoplteration once the end of file is reached

file.skip(count)

Skip the next count records in file and return the number of records skipped. If the return value is
less than count, the end of the file has been reached. At end of file, return 0. Since SiLK 38.19.1.

file.notes()

Return the list of annotation headers for the file as a list of strings.

file.invocations()

Return the list of invocation headers for the file as a list of strings.

file.close()

Close the file and return None.

SiLK-3.24.0 19

PySiLK PySiLK Reference Guide

PrefixMap Object

A PrefixMap object represents an immutable mapping from IP addresses or protocol/port pairs to labels.
PrefixMap objects are created from SiLK prefix map files as created by rwpmapbuild(1).

class silk.PrefixMap(filename)

The constructor creates a prefix map initialized from the filename. The PrefixMap object will be of
one of the two subtypes of PrefixMap: an AddressPrefixMap or a ProtoPortPrefixMap.

Supported operations and methods:

pmap|key]
Return the string label associated with key in pmap. key must be of the correct type: either an
IPAddr if pmap is an AddressPrefixMap, or a 2-tuple of integers (protocol, port), if pmap is a
ProtoPortPrefixMap. The method raises TypeError when the type of the key is incorrect.
pmap.get(key, default=None)
Return the string label associated with key in pmap. Return the value default if key is not in pmap,
or if key is of the wrong type or value to be a key for pmap.
pmap.values()

Return a tuple of the labels defined by the PrefixMap pmap.

pmap.iterranges()

Return an iterator that will iterate over ranges of contiguous values with the same label. The return
values of the iterator will be the 3-tuple (start, end, label), where start is the first element of the range,
end is the last element of the range, and label is the label for that range.

Bag Object

A Bag object is a representation of a multiset. Each key represents a potential element in the set, and the
key’s value represents the number of times that key is in the set. As such, it is also a reasonable representation
of a mapping from keys to integers.

Please note, however, that despite its set-like properties, Bag objects are not nearly as efficient as IPSet
objects when representing large contiguous ranges of key data.

In PySiLK, the Bag object is designed to look and act similar to Python dictionary objects, and in many
cases Bags and dicts can be used interchangeably. There are differences, however, the primary of which is
that bag[key] returns a value for all values in the key range of the bag. That value will be an integer zero
for all key values that have not been incremented.

class silk.Bag(mapping=None, key_type=None, key_len=None, counter_type=None,
counter_len=None)

The constructor creates a bag. All arguments are optional, and can be used as keyword arguments.

If mapping is included, the bag is initialized from that mapping. Valid mappings are:

e a Bag

e a key/value dictionary

20 SiLK-3.24.0

PySiLK Reference Guide PySiLK

e an iterable of key/value pairs

The key_type and key_len arguments describe the key field of the bag. The key_type should be a string from
the list of valid types below. The key_len should be an integer describing the number of bytes that will
represent values of key_type. The key_type argument is case-insensitive.

If key_type is not specified, it defaults to ’any-ipv6’, unless silk.ipv6_enabled() is False, in which case the
default is 'any-ipv4’. The one exception to this is when key_type is not specified, but key_len is specified with
a value of less than 16. In this case, the default type is 'custom’.

Note: Key types that specify IPv6 addresses are not valid if silk.ipv6_enabled() returns False. An error
will be thrown if they are used in this case.

If key_len is not specified, it defaults to the default number of bytes for the given key_type (which can be
determined by the chart below). If specified, key_len must be one of the following integers: 1, 2, 4, 16.

The counter_type and counter_len arguments describe the counter value of the bag. The counter_type should
be a string from the list of valid types below. The counter_len should be an integer describing the number
of bytes that will represent valid of counter_type. The counter_type argument is case insensitive.

If counter_type is not specified, it defaults to ’custom’.
If counter_len is not specified, it defaults to 8. Currently, 8 is the only valid value of counter_len.

Here is the list of valid key and counter types, along with their default key_len values:

’sIPv4’, 4
’dIPv4’, 4
’sPort’, 2
’dPort’, 2
’protocol’, 1
’packets’, 4
’bytes’, 4
‘flags’, 1
’sTime’, 4
’duration’, 4
’eTime’, 4
’sensor’, 2
’input’, 2
’output’, 2
‘'nhIPv4’, 4
’initialFlags’, 1
’sessionFlags’, 1

’attributes’, 1

SiLK-3.24.0 21

PySiLK PySiLK Reference Guide

’application’, 2

’class’, 1

‘type’, 1

’icmpTypeCode’, 2

’sIPv6’, 16

’dIPv6’, 16

'nhIPv6’, 16

’records’, 4

’sum-packets’, 4

’sum-bytes’, 4

’sum-duration’, 4

‘any-ipv4’, 4

’any-ipv6’, 16

’any-port’, 2

’any-snmp’, 2

’any-time’, 4

’custom’, 4

Deprecation Notice: For compatibility with SILK 2.x, the key_type argument may be a Python class. An
object of the key_type class must be constructable from an integer, and it must possess an __int__() method

which retrieves that integer from the object. Regardless of the maximum integer value supported by the
key_type class, internally the bag will store the keys as type ’custom’ with length 4.

Other constructors, all class methods:

silk.Bag.ipaddr(mapping, counter_type=None, counter_len=None)

Creates a Bag using ’any-ipv6’ as the key type (or ’any-ipv4’ if silk.ipv6_enabled() is False).
counter_type and counter_len are used as in the standard Bag constructor. Equivalent to
Bag(mapping).

silk.Bag.integer(mapping, key_len=None, counter_type=None, counter_len=None)
Creates a Bag using ’custom’ as the key_type (integer bag). key_len, counter_type, and counter_len are
used as in the standard Bag constructor. Equivalent to Bag(mapping, key_type="custom’).
silk.Bag.load(path, key_type=None)

Creates a Bag by reading a SiLK bag file. path must be a valid location of a bag. When present, the
key_type argument is used as in the Bag constructor, ignoring the key type specified in the bag file.
When key_type is not provided and the bag file does not contain type information, the key is set to
‘custom’ with a length of 4.

22 SiLK-3.24.0

PySiLK Reference Guide PySiLK

silk.Bag.load_ipaddr(path)

Creates an IP address bag from a SiLK bag file. Equivalent to
Bag.load(path, key_type = IPv4Addr). This constructor is deprecated as of SiLK 3.2.0.

silk.Bag.load_integer(path)

Creates an integer bag from a SiLK bag file. Equivalent to Bag.load(path, key_type = int). This
constructor is deprecated as of SiLK 3.2.0.

Constants:

silk. BAG_COUNTER_MAX

This constant contains the maximum possible value for Bag counters.
Other class methods:

silk.Bag.field_types()

Returns a tuple of strings which are valid key_type or counter_type values.

silk.Bag.type_merge(type_a, type_b)

Given two types from Bag.field types(), returns the type that would be given (by default)
to a bag that is a result of the co-mingling of two bags of the given types. For example:
Bag.type_merge(’sport’,’dport’) == ’any-port’.

Supported operations and methods:

In the lists of operations and methods below,

e bag and bag2 are Bag objects

e key and key2 are IPAddrs for bags that contain IP addresses, or integers for other bags
e value and wvalue2 are integers which represent the counter associated a key in the bag

e ipset is an IPSet object

e ipwildcard is an IPWildcard object
The following operations and methods do not modify the Bag;:

bag.get_info()

Return information about the keys and counters of the bag. The return value is a dictionary with the
following keys and values:

’key_type’

The current key type, as a string.
’key_len’

The current key length in bytes.

’counter_type’
The current counter type, as a string.

SiLK-3.24.0 23

PySiLK PySiLK Reference Guide

’counter_len’

The current counter length in bytes.

The keys have the same names as the keyword arguments to the bag constructor. As a result, a bag
with the same key and value information as an existing bag can be generated by using the following
idiom: Bag(**bag.get_info()).

bag.copy()
Return a new Bag which is a copy of bag.

bag[key]

Return the counter value associated with key in bag.

bag|key:key2] or baglkey,key2,...]
Return a new Bag which contains only the elements in the key range [key, key2), or a new Bag
containing only the given elements in the comma-separated list. In point of fact, the argument(s) in
brackets can be any number of comma separated keys or key ranges. For example: bag[1,5,15:18,20]
will return a bag which contains the elements 1, 5, 15, 16, 17, and 20 from bag.

bag|ipset]
Return a new Bag which contains only elements in bag that are also contained in ipset. This is only
valid for TP address bags. The ipset can be included as part of a comma-separated list of slices, as
above.

bag[ipwildcard]
Return a new Bag which contains only elements that are also contained in ipwildcard. This is only
valid for IP address bags. The ipwildcard can be included as part of a comma-separated list of slices,
as above.

key in bag

Return True if bag[key] is non-zero, False otherwise.

bag.get(key, default=None)
Return baglkey] if key is in bag, otherwise return default.

bag.items()
Return a list of (key, value) pairs for all keys in bag with non-zero values. This list is not guaranteed
to be sorted in any order.

bag.iteritems()
Return an iterator over (key, value) pairs for all keys in bag with non-zero values. This iterator is
not guaranteed to iterate over items in any order.

bag.sorted_iter()
Return an iterator over (key, value) pairs for all keys in bag with non-zero values. This iterator is
guaranteed to iterate over items in key-sorted order.

bag.keys()

Return a list of keys for all keys in bag with non-zero values. This list is guaranteed to be in key-sorted
order.

24 SiLK-3.24.0

PySiLK Reference Guide PySiLK

bag.iterkeys()
Return an iterkeys over keys for all keys in bag with non-zero values. This iterator is not guaranteed
to iterate over keys in any order.

bag.values()
Return a list of values for all keys in bag with non-zero values. The list is guaranteed to be in key-sorted
order.

bag.itervalues()
Return an iterator over values for all keys in bag with non-zero values. This iterator is not guaranteed
iterate over values in any order, but the order is consistent with that returned by iterkeys().

bag.group_iterator(bag2)
Return an iterator over keys and values of a pair of Bags. For each key which is in either bag or
bag2, this iterator will return a (key, value, value2) triple, where value is bag.get(key), and value2
is bag.get(key). This iterator is guaranteed to iterate over triples in key order.

bag + bag?2
Add two bags together. Return a new Bag for which newbag[key] = bag[key] + bag2[key] for
all keys in bag and bag2. Will raise an OverflowError if the resulting value for a key is greater than
BAG_COUNTER_MAX. If the two bags are of different types, the resulting bag will be of a type
determined by Bag.type merge().

bag - bag2
Subtract two bags. Return a new Bag for which newbag[key] = bag[key] - bag2[key] for all keys
in bag and bag2, as long as the resulting value for that key would be non-negative. If the resulting
value for a key would be negative, the value of that key will be zero. If the two bags are of different
types, the resulting bag will be of a type determined by Bag.type_merge().

bag.min(bag2)
Return a new Bag for which newbag[key] = min(bag|key], bag2[key]) for all keys in bag and bag2.

bag.max(bag2)
Return a new Bag for which newbag[key] = max(baglkey], bag2[key]) for all keys in bag and
bag?2.

bag.div(bag?2)

Divide two bags. Return a new Bag for which newbag[key] = bag[key] / bag2[key]) rounded to
the nearest integer for all keys in bag and bag2, as long as bag2|[key| is non-zero. newbaglkey] = 0
when bag2lkey| is zero. If the two bags are of different types, the resulting bag will be of a type
determined by Bag.type_merge().

bag * integer

integer * bag
Multiple a bag by a scalar. Return a new Bag for which newbag[key] = bag[key] * integer for all
keys in bag.

bag.intersect(set_like)

Return a new Bag which contains bag[key] for each key where key in set_like is true. set_like is any
argument that supports Python’s in operator, including Bags, IPSets, IPWildcards, and Python sets,
lists, tuples, et cetera.

SiLK-3.24.0 25

PySiLK PySiLK Reference Guide

bag.complement_intersect(set_like)
Return a new Bag which contains bag[key] for each key where key in set_like is not true.
bag.ipset()

Return an IPSet consisting of the set of IP address key values from bag with non-zero values. This
only works if bag is an IP address bag.

bag.inversion()

Return a new integer Bag for which all values from bag are inserted as key elements. Hence, if two
keys in bag have a value of 5, newbag|[5] will be equal to two.

bag == bag?2

Return True if the contents of bag are equivalent to the contents of bag2, False otherwise.
bag '= bag2

Return False if the contents of bag are equivalent to the contents of bag2, True otherwise.

bag.save(filename, compression=DEFAULT)

Save the contents of bag in the file filename. The compression determines the compression method
used when outputting the file. Valid values are the same as those in silk.silkfile_open().

The following operations and methods will modify the Bag:

bag.clear()
Empty bag, such that bag[key] is zero for all keys.

baglkey] = value

Set the number of key in bag to value.

del baglkey]
Remove key from bag, such that bag[key] is zero.
bag.update(mapping)

For each item in mapping, bag is modified such that for each key in mapping, the value for that key in
bag will be set to the mapping’s value. Valid mappings are those accepted by the Bag() constructor.

bag.add(keyl[, key2|, ...]])

Add one of each key to bag. This is the same as incrementing the value for each key by one.

bag.add (iterable)

Add one of each key in iterable to bag. This is the same as incrementing the value for each key by one.

bag.remove(key[, key2|, ...]])

Remove one of each key from bag. This is the same as decrementing the value for each key by one.

bag.remove(iterable)

Remove one of each key in iterable from bag. This is the same as decrementing the value for each key
by one.

bag.incr(key, value = 1)

Increment the number of key in bag by value. value defaults to one.

26 SiLK-3.24.0

PySiLK Reference Guide PySiLK

bag.decr(key, value = 1)

Decrement the number of key in bag by value. value defaults to one.

bag += bag2
Equivalent to bag = bag + bag2, unless an OverflowError is raised, in which case bag is
no longer necessarily valid. When an error is not raised, this operation takes less memory than
bag = bag + bag2. This operation can change the type of bag, as determined by Bag.type_merge().

bag -= bag2
Equivalent to bag = bag - bag2. This operation takes less memory than bag = bag - bag2. This
operation can change the type of bag, as determined by Bag.type_merge().

bag *= integer
Equivalent to bag = bag * integer, unless an OverflowError is raised, in which case bag is no longer
necessarily valid. When an error is not raised, this operation takes less memory than bag = bag * in-
teger.

bag.constrain_values(min=None, maxz=None)
Remove key from bag if that key’s value is less than min or greater than maz. At least one of min or
maz must be specified.

bag.constrain_keys(min=None, mar=None)

Remove key from bag if that key is less than min, or greater than maxz. At least one of min or max
must be specified.

TCPFlags Object

A TCPFlags object represents the eight bits of flags from a TCP session.

class silk. TCPFlags(value)

The constructor takes either a TCPFlags value, a string, or an integer. If a TCPFlags value, it
returns a copy of that value. If an integer, the integer should represent the 8-bit representation of the
flags. If a string, the string should consist of a concatenation of zero or more of the characters F, S, R,
P, A, U, E, and C---upper or lower-case---representing the FIN, SYN, RST, PSH, ACK, URG, ECE, and
CWR flags. As of SiLK 3.20.0, the constructor accepts = which sets all flags in the contructor. Spaces
in the string are ignored.

Examples:

>>> a
>>> b

TCPFlags(’SA’)
TCPFlags (5)

Instance attributes (read-only):

flags.fin

True if the FIN flag is set on flags, False otherwise
flags.syn

True if the SYN flag is set on flags, False otherwise

SiLK-3.24.0 27

PySiLK PySiLK Reference Guide

flags.rst
True if the RST flag is set on flags, False otherwise

flags.psh
True if the PSH flag is set on flags, False otherwise

flags.ack
True if the ACK flag is set on flags, False otherwise

flags.urg
True if the URG flag is set on flags, False otherwise

flags.ece

True if the ECE flag is set on flags, False otherwise

flags.cwr
True if the CWR flag is set on flags, False otherwise

Supported operations and methods:

“flags
Return the bitwise inversion (not) of flags

flagsl & flags2
Return the bitwise intersection (and) of the flags from flags! and flags2

flags1 | flags2
Return the bitwise union (or) of the flags from flags? and flags2.
flags1l = flags2
Return the bitwise exclusive disjunction (xor) of the flags from flags! and flags2.

int(flags)
Return the integer value of the flags set in flags.

str(flags)
Return a string representation of the flags set in flags.

flags.padded()
Return a string representation of the flags set in flags. This representation will be padded with spaces
such that flags will line up if printed above each other.

flags
When used in a setting that expects a boolean, return True if any flag value is set in flags. Return
False otherwise.

flags.matches(flagmask)

Given flagmask, a string of the form high_flags/mask_flags, return True if the flags of flags match
high_flags after being masked with mask_flags; False otherwise. Given a flagmask without the slash
(/), return True if all bits in flagmask are set in flags. Le., a flagmask without a slash is interpreted
as 7 flagmask / flagmask” .

28 SiLK-3.24.0

PySiLK Reference Guide PySiLK

Constants:

The following constants are defined:

silk. TCP_FIN
A TCPFlags value with only the FIN flag set

silk. TCP_SYN
A TCPFlags value with only the SYN flag set

silk. TCP_RST
A TCPFlags value with only the RST flag set

silk. TCP_PSH
A TCPFlags value with only the PSH flag set

silk. TCP_ACK
A TCPFlags value with only the ACK flag set

silk. TCP_URG
A TCPFlags value with only the URG flag set

silk. TCP_ECE
A TCPFlags value with only the ECE flag set

silk. TCP_CWR
A TCPFlags value with only the CWR flag set

FGlob Object

An FGlob object is an iterable object which iterates over filenames from a SiLK data store. It does this
internally by calling the rwfglob(1) program. The FGlob object assumes that the rwfglob program is in
the PATH, and will raise an exception when used if not.

Note: It is generally better to use the silk.site.repository_iter() function from the silk.site Module instead of
the FGlob object, as that function does not require the external rwfglob program. However, the FGlob
constructor allows you to use a different site configuration file every time, whereas the silk.site.init_site()
function only supports a single site configuration file.

class silk.FGlob(classname=None, type=None, sensors=None, start_date=None,
end_date=None, data_rootdir=None, site_config_file=None)

Although all arguments have defaults, at least one of classname, type, sensors, start_date must be
specified. The arguments are:

classname
if given, should be a string representing the class name. If not given, defaults based on the site
configuration file, silk.conf(5).

type
if given, can be either a string representing a type name or comma-separated list of type names,
or can be a list of strings representing type names. If not given, defaults based on the site
configuration file, silk.conf.

SiLK-3.24.0 29

PySiLK PySiLK Reference Guide

sensors
if given, should be either a string representing a comma-separated list of sensor names or IDs,
and integer representing a sensor 1D, or a list of strings or integers representing sensor names or
IDs. If not given, defaults to all sensors.

start_date
if given, should be either a string in the format YYYY/MM/DD[:HH], a date object, a datetime
object (which will be used to the precision of one hour), or a time object (which is used for the
given hour on the current date). If not given, defaults to start of current day.

end_date
if given, should be either a string in the format YYYY/MM/DD[:HH], a date object, a datetime
object (which will be used to the precision of one hour), or a time object (which is used for the
given hour on the current date). If not given, defaults to start_date. The end_date cannot be
specified without a start_date.

data_rootdir

if given, should be a string representing the directory in which to find the packed SiLK data files.
If not given, defaults to the value in the SILK_DATA_ROOTDIR environment variable or the
compiled-in default (/data).

site_config_file

if given, should be a string representing the path of the site configuration file, silk.conf.
If not given, defaults to the value in the SILK_CONFIG_FILE environment variable or
$SILK_DATA_ROOTDIR/silk.conf.

An FGlob object can be used as a standard iterator. For example:

for filename in FGlob(classname="all", start_date="2005/09/22"):

for rec in silkfile_open(filename):

silk.site Module

The silk.site module contains functions that load the SiLK site file, and query information from that file.

silk.site.init_site(siteconf=None, rootdir=None)

30

Initializes the SiLK system’s site configuration. The siteconf parameter, if given, should be the path
and name of a SiLK site configuration file (see silk.conf(5)). If siteconf is omitted, the value specified
in the environment variable SILK_CONFIG_FILE will be used as the name of the configuration file. If
SILK_CONFIG_FILE is not set, the module looks for a file named silk.conf in the following directories:
the directory specified by the rootdir argument, the directory specified in the SILK_DATA_ROOTDIR
environment variable; the data root directory that is compiled into SiLK (/data); the directories
$SILK_PATH/share/silk/ and $SILK_PATH/share/.

The rootdir parameter, if given, should be the path to a SiLK data repository that a configura-
tion that matches the SiLK site configuration. If rootdir is omitted, the value specified in the
SILK_DATA_ROOTDIR environment variable will be used, or if that variable is not set, the data
root directory that is compiled into SiLK (/data). The rootdir may be specified without a siteconf
argument by using rootdir as a keyword argument. ILe., init_site(rootdir="/data”).

This function should not generally be called explicitly unless one wishes to use a non-default site
configuration file.

SiLK-3.24.0

PySiLK Reference Guide PySiLK

The init_site() function can only be called successfully once. The return value of init_site() will be
true if the site configuration was successful, or False if a site configuration file was not found. If a
siteconf parameter was specified but not found, or if a site configuration file was found but did not
parse properly, an exception will be raised instead. Once init_site() has been successfully invoked,
silk.site.have_site_config() will return True, and subsequent invocations of init_site() will raise a
RuntimeError exception.

Some silk.site methods and RWRec members require information from the silk.conf file, and
when these methods are called or members accessed, the silk.site.init_site() function is implicitly
invoked with no arguments if it has not yet been called successfully. The list of functions, methods,
and attributes that exhibit this behavior include: silk.site.sensors(), silk.site.classtypes(),
silk.site.classes(), silk.site.types(), silk.site.default_types(), silk.site.default_class(),
silk.site.class_sensors(), silk.site.sensor_id(), silk.site.sensor_from_id(), silk.site.classtype_id(),
silk.site.classtype_from_id(), silk.site.set_data_rootdir(), silk.site.repository_iter(),
silk.site.repository _silkfile_iter(), silk.site.repository_full_iter(), rwrec.as_dict(),
rwrec.classname, rwrec.typename, rwrec.classtype, and rwrec.sensor.

silk.site.have_site_config()
Return True if silk.site.init_site() has been called and was able to successfully find and load a SiLK
configuration file, False otherwise.

silk.site.set_data_rootdir(rootdir)

Change the current SiLK data root directory once the silk.conf file has been loaded. This function
can be used to change the directory used by the silk.site iterator functions. To change the SiLK
data root directory before loading the silk.conf file, call silk.site.init_site() with a rootdir argument.
set_data_rootdir() implicitly calls silk.site.init_site() with no arguments before changing the root
directory if silk.site.have_site_config() returns False.

silk.site.get_site_config()

Return the current path to the SiLK site configuration file. Before silk.site.init_site() is called suc-
cessfully, this will return the place that init_site() called with no arguments will first look for a
configuration file. After init_site() has been successfully called, this will return the path to the file
that init_site() loaded.

silk.site.get_data_rootdir()

Return the current SiLK data root directory.

silk.site.sensors()
Return a tuple of valid sensor names. Implicitly calls silk.site.init_site() with no arguments if
silk.site.have_site_config() returns False. Returns an empty tuple if no site file is available.
silk.site.classes()
Return a tuple of valid class names. Implicitly calls silk.site.init_site() with no arguments if
silk.site.have_site_config() returns False. Returns an empty tuple if no site file is available.
silk.site.types(class)
Return a tuple of valid type names for class class. Implicitly calls silk.site.init_site() with no arguments
if silk.site.have_site_config() returns False. Throws KeyError if no site file is available or if class is
not a valid class.
silk.site.classtypes()

Return a tuple of valid (class name, type name) tuples. Implicitly calls silk.site.init_site() with no
arguments if silk.site.have_site_config() returns False. Returns an empty tuple if no site file is available.

SiLK-3.24.0 31

PySiLK PySiLK Reference Guide

silk.site.default_class()

Return the default class name. Implicitly calls silk.site.init_site() with no arguments if
silk.site.have_site_config() returns False. Returns None if no site file is available.

silk.site.default_types(class)

Return a tuple of default types associated with class class. Implicitly calls silk.site.init_site() with no
arguments if silk.site.have_site_config() returns False. Throws KeyError if no site file is available or
if class is not a valid class.

silk.site.class_sensors(class)

Return a tuple of sensors that are in class class. Implicitly calls silk.site.init_site() with no arguments
if silk.site.have_site_config() returns False. Throws KeyError if no site file is available or if class is
not a valid class.

silk.site.sensor_classes(sensor)

Return a tuple of classes that are associated with sensor. Implicitly calls silk.site.init_site() with no
arguments if silk.site.have_site_config() returns False. Throws KeyError if no site file is available or
if sensor is not a valid sensor.

silk.site.sensor_description(sensor)

Return the sensor description as a string, or Nomne if there is no description. Implicitly calls
silk.site.init_site() with no arguments if silk.site.have_site_config() returns False. Throws KeyEr-
ror if no site file is available or if sensor is not a valid sensor.

silk.site.sensor_id(sensor)

Return the numeric sensor ID associated with the string sensor. Implicitly calls silk.site.init_site() with
no arguments if silk.site.have_site_config() returns False. Throws KeyError if no site file is available
or if sensor is not a valid sensor.

silk.site.sensor_from_id(id)

Return the sensor name associated with the numeric sensor ID id. Implicitly calls silk.site.init_site()
with no arguments if silk.site.have_site_config() returns False. Throws KeyError if no site file is
available or if id is not a valid sensor identifier.

silk.site.classtype_id((class, type))

Return the numeric ID associated with the tuple (class, type). Implicitly calls silk.site.init_site() with
no arguments if silk.site.have_site_config() returns False. Throws KeyError if no site file is available,
if class is not a valid class, or if type is not a valid type in class.

silk.site.classtype_from_id(id)

Return the (class, type) name pair associated with the numeric ID id. Implicitly calls silk.site.init_site()
with no arguments if silk.site.have_site_config() returns False. Throws KeyError if no site file is
available or if id is not a valid identifier.

silk.site.repository _iter(start=None, end=None, classname=None, types=None,
classtypes=None, sensors=None)

Return an iterator over file names in a SiLK repository. The repository is assumed to be in
the data root directory that is returned by silk.site.get_data_rootdir() and to conform to the for-
mat of the current site configuration. This function implicitly calls silk.site.init_site() with no
arguments if silk.site.have_site_config() returns False. See also silk.site.repository_full_iter() and
silk.site.repository_silkfile_iter().

The following types are accepted for start and end:

32 SiLK-3.24.0

PySiLK Reference Guide PySiLK

e a datetime.datetime object, which is considered to be specified to hour precision
e a datetime.date object, which is considered to be specified to day precision

e a string in the SiLK date format YYYY/MM/DD[:HH], where the timezone depends on how SiLK
was compiled; check the value of silk.get_configuration(” TIMEZONE_SUPPORT").

The rules for interpreting start and end are:

e When both start and end are specified to hour precision, files from all hours within that time
range are returned.

e When start is specified to day precision, the hour specified in end (if any) is ignored, and files for
all dates between midnight at start and the end of the day represented by end are returned.

e When end is not specified and start is specified to day precision, files for that complete day are
returned.

e When end is not specified and start is specified to hour precision, files for that single hour are
returned.

e When neither start nor end are specified, files for the current day are returned.

e It is an error to specify end without start, or to give an end that proceeds start.

To specify classes and types, either use the classname and types parameters or use the classtypes
parameter. It is an error to use classname or types when classtypes is specified.

The classname parameter should be a named class that appears in silk.site.classes(). If neither class-
name nor classtypes are specified, classname will default to that returned by silk.site.default_class().

The types parameter should be either a named type that appears in silk.site.types(classname) or
a sequence of said named types. If neither types nor classtypes is specified, types will default to
silk.site.default_types(classname).

The classtypes parameter should be a sequence of (classname, type) pairs. These pairs must be in the
sequence returned by silk.site.classtypes().

The sensors parameter should be either a sensor name or a sequence of sensor names from the se-
quence returned by silk.site.sensors(). If sensors is left unspecified, it will default to the list of sensors
supported by the given class(es).

silk.site.repository _silkfile_iter(start=None, end=None, classname=None, types=None,
classtypes=None, sensors=None)

Works similarly to silk.site.repository_iter() except the file names that repository_iter() would return
are opened as SilkFile objects and returned.

silk.site.repository _full_iter(start=None, end=None, classname=None, types=None,
classtypes=None, sensors=None)

Works similarly to silk.site.repository_iter(). Unlike repository_iter(), this iterator’s output will
include the names of files that do not exist in the repository. The iterator returns (filename, bool)
pairs where the bool value represents whether the given filename exists. For more information, see the
description of the --print-missing-files switch in rwfglob(1).

silk.plugin Module

silk.plugin is a module to support using PySiLK code as a plug-in to the rwfilter(1), rwcut(1), rw-
group(1), rwsort(1), rwstats(1), and rwuniq(1) applications. The module defines the following meth-
ods, which are described in the silkpython(3) manual page:

SiLK-3.24.0 33

PySiLK PySiLK Reference Guide

silk.plugin.register_switch(switch_name, handler=handler, [arg=mneeds_arg],
[help=help_string])

Define the command line switch --switch_name that can be used by the PySiLK plug-in.
silk.plugin.register_filter(filter, [finalize=finalize], [initialize=initialize])

Register the callback function filter that can be used by rwfilter to specify whether the flow record

passes or fails.

silk.plugin.register_field(field_name, [add_rec_to_bin=add_rec_to_bin,)

[bin_compare=bin_compare,] [bin_bytes=bin_bytes,] [bin_merge=bin_merge,]
[bin_to_text=bin_to_text,] [column_width=column_width,] [description=description,]
[initial value=initial_value,] [initialize=1nitialize,] [rec_to_bin=rec_to_bin,|

[rec_to_text=rec_to_text])

Define the new key field or aggregate value field named field_name. Key fields can be used in rwcut,
rwgroup, rwsort, rwstats, and rwuniq. Aggregate value fields can be used in rwstats and rwuniq.
Creating a field requires specifying one or more callback functions---the functions required depend on
the application(s) where the field will be used. To simplify field creation for common field types, the
remaining functions can be used instead.

silk.plugin.register_int_field(field_name, int_function, min, mazx, [width])

Create the key field field_name whose value is an unsigned integer.
silk.plugin.register_ipv4_field(field_-name, ipv4_function, [width])

Create the key field field_name whose value is an IPv4 address.
silk.plugin.register_ip_field(field_name, ipv4_function, [width])

Create the key field field_name whose value is an IPv4 or IPv6 address.
silk.plugin.register_enum_field(field_name, enum_function, width, [ordering])

Create the key field field-name whose value is a Python object (often a string).
silk.plugin.register_int_sum_aggregator(agg_value_name, int_function, [max_sum], [width])

Create the aggregate value field agg_value_name that maintains a running sum as an unsigned integer.
silk.plugin.register_int_max_aggregator(agg_value_name, int_function, [max_maz], [width])

Create the aggregate value field agg_value_name that maintains the maximum unsigned integer value.

silk.plugin.register_int_min_aggregator(agg_value_name, int_function, [max_min]|, [width])

Create the aggregate value field agg_-value_name that maintains the minimum unsigned integer value.

EXAMPLE

Using PySiLK

The following is an example using the PySiLK bindings. The code is meant to show some standard PySiLK
techniques, but is not otherwise meant to be useful.

The code reads each record in a SiLK flow file, checks whether the record’s source port is 80/tcp or 8080/tcp
and its volume is larger than 3 packets and 120 bytes, stores the destination IP of matching records in
an IPset, and writes the IPset to a destination file. In addition, it prints the number of unique destination
addresses and the addresses themselves to the standard output. Additional explanations can be found in-line
in the comments.

34 SiLK-3.24.0

PySiLK Reference Guide PySiLK

#! /usr/bin/python

Use print functions (Compatible with Python 3.0; Requires 2.6+)
from __future__ import print_function #Python2.6 or later required

Import the PySilK bindings
from silk import *

Import sys for the command line arguments.
import sys

Main function
def main():
if len(sys.argv) != 3:
print ("Usage: %s infile outset" ¥ sys.argv[0])
sys.exit (1)

Open a silk flow file for reading
infile = silkfile_open(sys.argv[1], READ)

Create an empty IPset
destset = IPSet()

Loop over the records in the file
for rec in infile:

Do comparisons based on rwrec field values
if (rec.protocol == 6 and rec.sport in [80, 8080] and
rec.packets > 3 and rec.bytes > 120):

Add the dest IP of the record to the IPset
destset.add(rec.dip)

Save the IPset for future use
try:
destset.save(sys.argv[2])
except:
sys.exit("Unable to write to %s" % sys.argv[2])

count the items in the set
count = 0O
for addr in destset:

count = count + 1

print("%d addresses" 7 count)

Another way to do the same
print("%d addresses" 7 len(destset))

SiLK-3.24.0 35

PySiLK

PySiLK Reference Guide

Ca
if

Print the ip blocks in the set
for base_prefix in destset.cidr_iter():
print ("%s/%d" % base_prefix)

11 the main() function when this program is started
_name__ == ’__main__’:

main()

Adjusting the Class and Type Fields of a Flow File

Normally SiLK flow records get stamped with a class as flow records are recorded in the repository. However,
if you are importing raw packet data or need to change some records that inadvertantly have the wrong
class/type, PySiLK makes it easy to fix.

The example below sets the class to ”all” and assigns a type of ”in’

)

, 7inweb”, "out”, or ”outweb” to each

record in an input file. The direction (in or out) is defined by an IPset that represents the internal network
(traffic that neither comes from nor goes to the internal network is discarded in this example). Web/non-web
flows are separated based on port.

#! /usr/bin/python

from __future__ import print_function #Python2.6 or later required
from silk import *

import silk.site

import sys # for command line args
from datetime import timedelta # for date math

webports = (80,443,8080)

inwebtype = ("all","inweb")

intype = ("all","in")

outwebtype = ("all","outweb")

outtype = ("all","out")

def main():

36

if len(sys.argv) != 4:
print("Usage: Y%s infile setfile outfile" % sys.argv[0])
sys.exit (1)

open the SilK file for reading
infile = silkfile_open(sys.argv[1], READ)

open the set file which represents my internal network
#print (sys.argv([2])
setfile = IPSet.load (sys.argv[2])

open the modified output file
outfile = silkfile.open(sys.argv[3], WRITE)

SiLK-3.24.0

PySiLK Reference Guide PySiLK

loop over the records in the file, shift time and write the update:
for rec in infile:

#

If the src ip is in the set, it’s going out.

1If the dst ip is in the set, it’s coming in.

If neither IP is in the set, discard the record.
#

if (rec.sport in webports) or (rec.dport in webports):
if rec.sip in setfile:
rec.classtype = outwebtype
outfile.write(rec)
elif rec.dip in setfile:
rec.classtype = inwebtype
outfile.write(rec)
else:
if rec.sip in setfile:
rec.classtype = outtype
outfile.write(rec)
elif rec.dip in setfile:
rec.classtype = intype
outfile.write(rec)

clean up
outfile.close()
infile.close()

main()

if __name == ’__main__"’:

Changing Timestamps in a Flow File

On occasion you may find that you need to adjust all the timestamps for a SiLK flow file. For example, the
flow file came from a packet capture file that was collected in a different time zone and had to be shifted a

number of hours. Another possibility is if you need to adjust files because you determine the clock time was
off.

It is relatively simple to change the timestamps using PySiLK. The sample code for changing data to another
time zone is shown below; a minor change would shift the data by seconds instead of hours.

#! /usr/bin/python

from __future__ import print_function #Python2.6 or later required
from silk import *
import sys # for command line args

from datetime import timedelta # for date math

def main():
if len(sys.argv) != 4:
print ("Usage: Y%s infile offset-hours outfile" % sys.argv([0])
sys.exit (1)

SiLK-3.24.0 37

PySiLK PySiLK Reference Guide

open the SilK file for reading
infile = silkfile_open(sys.argv[1], READ)

create the time offset object
offset = timedelta(hours=int(sys.argv[2]))

open the modified output file
outfile = silkfile_open(sys.argv[3], WRITE)

loop over the records in the file, shift time and write the update:
for rec in infile:

rec.stime = rec.stime + offset

outfile.write(rec)

clean up
outfile.close()
infile.close()

if __name == ’__main__’:

main()

Grouping FTP Flow Records

The following script attempts to group all flows representing one direction of an FTP session and print them
together. It takes as an argument the name of a file containing raw SiLK records sorted by start time and
port number (rwsort --fields=stime,sport). The script extracts from the file all flows that potentially
represent FTP traffic. We define a possible FTP flow as any flow where:

e the source port is 21 (FTP control channel)
e the source port is 20 (FTP data transfer port)

e both the source port and destination port are ephemeral (data transfer)

If a flow record has a source port of 21, the script adds the source and destination address to the list
of possible FTP groups. The script categorizes each data transfer flow (source port 20 or ephemeral to
ephemeral) according to its source and destination IP address pair. If a flow from the control channel with
the same source and destination IP address exists the source and destination ports in the flow are added to
the list of ports associated with the control channel interaction, otherwise the script lists the data transfer as
being unclassified. After the entire file is processed, all FTP sessions that have been grouped are displayed.

#! /usr/bin/python

from __future__ import print_function #Python2.6 or later required
import the necessary modules
import silk

import sys

38 SiLK-3.24.0

PySiLK Reference Guide PySiLK

Test that the argument number is correct
if (len(sys.argv) != 2):
print ("Must supply a SilK data file.")
sys.exit()

open the SiLK file for reading
rawFile=silk.silkfile_open(sys.argv[1], silk.READ)

Initialize the record structure
Unclassified will be the record ephemeral to ephemeral
connections that don’t appear to have a control channel
interactions = {"Unclassified":[]}

Count of records processed
count = 0

Process the input file
for rec in rawFile:
count += 1
key="%156s <--> 155"} (rec.sip,rec.dip)
if (rec.sport==21):
if not key in interactions:
interactions[key] = []
else:
if key in interactions:
interactions[key] .append("%5d <--> %5d"%(rec.sport,rec.dport))
else:
interactions["Unclassified"] .append(
"%15s:%5d <--> %15s:%5d"% (rec.sip,rec.sport,rec.dip,rec.dport))

Print the count of all records
print(str(count) + " records processed")

Print the groups of FTP flows
keyList = sorted(interactions.keys())
for key in keyList:
print("\n" + key + " " + str(len(interactions[key])))
if (key != "Unclassified"):
for line in interactions[key]:
print (" " + line)

Example output of the script:
184 records processed

XXX .XXX.XXX.236 <--> yyy.yyy.yyy.231 3
20 <--> 56180
20 <--> 56180
20 <--> 58354

Unclassified 158

SiLK-3.24.0 39

PySiLK PySiLK Reference Guide

ENVIRONMENT

The following environment variables affect the tools in the SiLK tool suite.

SILK_CONFIG_FILE
This environment variable contains the location of the site configuration file, silk.conf. This variable
will be used by silk.site.init_site() if no argument is passed to that method.

SILK_DATA _ROOTDIR

This variable gives the root of directory tree where the data store of SiILK Flow files is maintained,
overriding the location that is compiled into the tools (/data). This variable will be used by the FGlob
constructor unless an explicit data_rootdir value is specified. In addition, the silk.site.init_site() may
search for the site configuration file, silk.conf, in this directory.

SILK_COUNTRY_CODES
This environment variable gives the location of the country code mapping file that the
silk.init_country_codes() function will use when no name is given to that function. The value of
this environment variable may be a complete path or a file relative to the SILK_PATH. See the FILES
section for standard locations of this file.

SILK_CLOBBER
The SiLK tools normally refuse to overwrite existing files. Setting SILK_CLOBBER to a non-empty
value removes this restriction.

SILK_PATH
This environment variable gives the root of the install tree. When searching for configuration files,
PySiLK may use this environment variable. See the FILES section for details.

PYTHONPATH

This is the search path that Python uses to find modules and extensions. The SiLK Python extension
described in this document may be installed outside Python’s installation tree; for example, in SiLK’s
installation tree. It may be necessary to set or modify the PYTHONPATH environment variable so
Python can find the SiLK extension.

PYTHONVERBOSE
If the SiLK Python extension fails to load, setting this environment variable to a non-empty string
may help you debug the issue.

SILK_ PYTHON_TRACEBACK
When set, Python plug-ins (see silkpython(3)) will output trace back information regarding Python
errors to the standard error.

PATH
This is the standard search path for executable programs. The FGlob constructor will invoke the
rwfglob(1) program; the directory containing rwfglob should be included in the PATH.

TZ

When a SiLK installation is built to use the local timezone (to determine if this is the case, check
the value of silk.get_configuration(” TIMEZONE_SUPPORT")), the value of the TZ environment
variable determines the timezone in which silk.site.repository_iter() parses timestamp strings. If the
T7Z environment variable is not set, the default timezone is used. Setting TZ to 0 or the empty string
causes timestamps to be parsed as UTC. The value of the TZ environment variable is ignored when
the SiLK installation uses utc. For system information on the TZ variable, see tzset(3).

40 SiLK-3.24.0

PySiLK Reference Guide PySiLK

FILES

${SILK_CONFIG_FILE}
ROOT_DIRECTORY /silk.conf
${SILK_PATH} /share/silk/silk.conf
${SILK_PATH} /share/silk.conf
/usr/local/share/silk/silk.conf
/usr/local/share/silk.conf

Possible locations for the SiLK site configuration file which are checked when no argument is passed
to silk.site.init_site().

${SILK_ COUNTRY_CODES}

${SILK_PATH} /share/silk/country_codes.pmap
${SILK_PATH} /share/country_codes.pmap
/usr/local/share/silk/country_codes.pmap

/usr/local /share/country_codes.pmap

Possible locations for the country code mapping file used by silk.init_country_codes() when no name
is given to the function.

${SILK_DATA_ROOTDIR}/
/data/

Locations for the root directory of the data repository. The silk.site.init_site() may search for the site
configuration file, silk.conf, in this directory.

SEE ALSO

silkpython(3), rwfglob(1), rwfileinfo(1), rwfilter(1), rwcut(1), rwpmapbuild(1), rwset(1), rwset-
build(1), rwgroup(1l), rwsort(1), rwstats(1), rwuniq(1l), rwgeoip2ccmap(1), silk.conf(5), sen-
sor.conf(5), silk(7), python(1), gzip(1), yaf(1), tzset(3), http://docs.python.org/

SiLK-3.24.0 41

http://docs.python.org/

PySiLK PySiLK Reference Guide

42 SiLK-3.24.0

silkpython

SiLK Python plug-in

SYNOPSIS
rwfilter —--python-file=FILENAME [--python-file=FILENAME ...]
rwfilter --python-expr=PYTHON_EXPRESSION ..

rwcut --python-file=FILENAME [--python-file=FILENAME ...]
--fields=FIELDS ...

rwgroup —-python-file=FILENAME [--python-file=FILENAME ...]
--id-fields=FIELDS ...

rwsort --python-file=FILENAME [--python-file=FILENAME ...]
--fields=FIELDS ...

rwstats --python-file=FILENAME [--python-file=FILENAME ...]
--fields=FIELDS --values=VALUES ...

rwuniq --python-file=FILENAME [--python-file=FILENAME ...]
--fields=FIELDS --values=VALUES ...

DESCRIPTION

The SiLK Python plug-in provides a way to use PySiLK (the SiLK extension for python(1) described in
pysilk(3)) to extend the capability of several SiLK tools.

e In rwfilter(1), new partitioning rules can be defined in PySiLK to determine whether a SiLK Flow
record is written to the --pass-destination or --fail-destination.

e In rwcut(1), new fields can be defined in PySiLK and displayed for each record.

43

silkpython PySiLK Reference Guide

e New fields can also be defined in rwgroup(1) and rwsort(1). These fields are used as part of the key
when grouping or sorting the records.

e For rwstats(1) and rwuniq(1), two types of fields can be defined: Key fields are used to categorize
the SiLK Flow records into bins, and aggregate value fields compute a value across all the SiLK Flow
records that are categorized into a bin. (An example of a built-in aggregate value field is the number
of packets that were seen for all flow records that match a particular key.)

To extend the SiLK tools using PySiLK, the user writes a Python file that calls Python functions defined in
the silk.plugin Python module and described in this manual page. When the user specifies the --python-
file switch to a SiLK application, the application loads the Python file and makes the new functionality
available.

The following sections will describe

how to create a command line switch with PySiLK that allows one to modify the run-time behavior
of their PySiLK code

how to use PySiLK with rwfilter

a simple API for creating fields in rwcut, rwgroup, rwsort, rwstats, and rwuniq

the advanced API for creating fields in those applications

Typically you will not need to explicitly import the silk.plugin module, since the --python-file switch does
this for you. In a module used by a Python plug-in, the module can gain access to the functions defined in
this manual page by importing them from silk.plugin:

from silk.plugin import *

Hint: If you want to check whether the Python code in FILENAME is defining the switches and fields you
expect, you can load the Python file and examine the output of --help, for example:

rwcut --python-file=FILENAME --help

User-defined command line switches

Command line switches can be added and handled from within a SiLK Python plug-in. In order to add a
new switch, use the following function:

register_switch(switch-name, handler=handler_func, [arg=needs_arg], [help=help_string])

switch_name

Provides the name of the switch you are registering, a string. Do not include the leading -- in the
name. If a switch already exists with the name switch_-name, the application will exit with an error
message.

handler_func

handler_func(/string/). Names a function that will be called by the application while it is processing
its command line if and only if the command line includes the switch --switch_name. (If the switch
is not given, the handler_func function will not be called.) When the arg parameter is specified

44 SiLK-3.24.0

PySiLK Reference Guide silkpython

and its value is False, the handler_func function will be called with no arguments. Otherwise, the
handler_func function will be called with a single argument: a string representing the value the user
passed to the --switch_name switch. The return value from this function is ignored. Note that the
register_switch() function requires a handler argument which must be passed by keyword.

needs_arg

Specifies a boolean value that determines whether the user must specify an argument to --
switch_name, and determines whether the handler_func function should expect an argument. When
arg is not specified or needs_arg is True, the user must specify an argument to --switch_name and
the handler_func function will be called with a single argument. When needs_arg is False, it is an error
to specify an argument to --switch_name and handler_func will be called with no arguments.

help_string

Provides the usage text to print describing this switch when the user runs the application with the
--help switch. This argument is optional; when it is not provided, a simple ”No help for this switch”
message is printed.

rwfilter usage

When used in conjunction with rwfilter(1), the SiLK Python plug-in allows users to define arbitrary
partitioning criteria using the SiLK extension to the Python programming language. To use this capability,
the user creates a Python file and specifies its name with the --python-file switch in rwfilter. The file
should call the register_filter() function for each filter that it wants to create:

register_filter(filter_func, [finalize=finalize_func], [initialize=initialize_func])

filter_func

Boolean = filter_func(silk. RWRec). Names a function that must accept a single argument, a
silk. RWRec object (see pysilk(3)). When the rwfilter program is run, it finds the records that
match the selection options, and hands each record to the built-in partitioning switches. A record that
passes all of the built-in switches is handed to the first Python filter_func() function as an RWRec
object. The return value of the function determines what happens to the record. The record fails the
filter_func() function (and the record is immediately written to the --fail-destination, if specified)
when the function returns one of the following: False, None, numeric zero of any type, an empty
string, or an empty container (including strings, tuples, lists, dictionaries, sets, and frozensets). If the
function returns any other value, the record passes the first filter_func() function, and the record
is handed to the next Python filter_func() function. If all filter_func() functions pass the record,
the record is written to the --pass-destination, if specified. (Note that when the --plugin switch is
present, the code it specifies will be called after the PySiLK code.)

wnitialize_func

initialize_func(). Names a function that takes no arguments. When this function is specified, is will
be called after rwfilter has completed its argument processing, and just before rwfilter opens the
first input file. The return value of this function is ignored.

finalize_func

finalize_func(). Names a function that takes no arguments. When this function is specified, it will be
called after all flow records have been processed. One use of the these functions is to print any statistics
that the filter_func() function was computing. The return value from this function is ignored.

SiLK-3.24.0 45

silkpython PySiLK Reference Guide

If register_filter() is called multiple times, the filter_func(), initialize_func(), and finalize_func() func-
tions will be invoked in the order in which the register_filter() functions were seen.

NOTE: For backwards compatibility, when the file named by --python-file does not call register_filter(),
rwfilter will search the Python file for functions named rwfilter() and finalize(). If it finds the rwfilter()
function, rwfilter will act as if the file contained:

register_filter(rwfilter, finalize=finalize)

The --python-file switch requires the user to create a file containing Python code. To allow the user to write
a small filtering check in Python, rwfilter supports the --python-expr switch. The value of the switch
should be a Python expression whose result determines whether a given record passes or fails, using the same
criterion as the filter_func() function described above. In the expression, the variable rec is bound to the
current silk. RWRec object. There is no support for the initialize_func() and finalize_func() functions.
The user may consider --python-expr=PYTHON_EXPRESSION as being implemented by

from silk import *
def temp_filter(rec):
return (PYTHON_EXPRESSION)

register_filter(temp_filter)

The --python-file and --python-expr switches allow for much flexibility but at the cost of speed: converting
a SiLK Flow record into an RWRec is expensive relative to most operations in rwfilter. The user should
use rwfilter’s built-in partitioning switches to whittle down the input as much as possible, and only use the
Python code to do what is difficult or impossible to do otherwise.

Simple field registration functions

The silk.plugin module defines a function that can be used to define fields for use in rwcut, rwgroup,
rwsort, rwstats, and rwuniq. That function is powerful, but it is also complex. To make it easy to define
fields for the common cases, the silk.plugin provides the functions described in this section that create a
key field or an aggregate value field. The advanced function is described later in this manual page (Advanced
field registration function).

Once you have created a key field or aggregate value field, you must include the field’s name in the argument
to the --fields or --values switch to tell the application to use the field.

Integer key field
The following function is used to create a key field whose value is an unsigned integer.

register_int_field(field_name, int_function, min, maz, [width])

field_name
The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

int_function

int = int_function(silk. RWRec). A function that accepts a silk. RWRec object as its sole argument,
and returns an unsigned integer which represents the value of this field for the given record.

46 SiLK-3.24.0

PySiLK Reference Guide silkpython

min
A number representing the minimum integer value for the field. If int_function returns a value less
than min, an error is raised.

max

A number representing the maximum integer value for the field. If int_function returns a value greater
than max, an error is raised.

width

The column width to use when displaying the field. This parameter is optional; the default is the
number of digits necessary to display the integer maxz.

IPv4 address key field
This function is used to create a key field whose value is an IPv4 address. (See also register_ip_field()).

register_ipv4_field(field_-name, ipv4_function, [width])

field_name
The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

ipv4_function

silk.TPv4Addr = ipv4_function(silk. RWRec). A function that accepts a silk. RWRec object as its
sole argument, and returns a silk.IPv4Addr object. This IPv4Addr object will be the IPv4 address
that represents the value of this field for the given record.

width
The column width to use when displaying the field. This parameter is optional, and it defaults to 15.

IP address key field
The next function is used to create a key field whose value is an IPv4 or IPv6 address.

register_ip_field(field_name, ip_function, [width])

field_name
The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

ip_function

silk.IPAddr = ip_function(silk. RWRec). A function that accepts a silk. RWRec object as its sole
argument, and returns a silk.IPAddr object which represents the value of this field for the given
record.

width

The column width to use when displaying the field. This parameter is optional. The default width is
39.

SiLK-3.24.0 47

silkpython PySiLK Reference Guide

This key field requires more memory internally than fields registered by the register_ipv4 _field() function.
If SiLK is compiled without IPv6 support, register_ip_field() works exactly like register_ipv4_field(),
including the default width of 15.

Enumerated object key field

The following function is used to create a key field whose value is any Python object. The maximum number
of different objects that can be represented is 4,294,967,296, or 2" 32.

register_enum _field(field_name, enum_function, width, [ordering])

field_name
The name of the new field, a string. If you attempt to add a key field that already exists, you will get
an an error message.

enum_function

object = enum_function(silk. RWRec). A function that accepts a silk. RWRec object as its sole
argument, and returns a Python object which represents the value of this field for the given record.
For typical usage, the Python objects returned by the enum_function will be strings representing some
categorical value.

width

The column width to use when displaying this field. The parameter is required.

ordering

A list of objects used to determine ordering for rwsort and rwuniq. This parameter is optional. If
specified, it lists the objects in the order in which they should be sorted. If the enum_function returns
a object that is not in ordering, the object will be sorted after all the objects in ordering.

Integer sum aggregate value field
This function is used to create an aggregate value field that maintains a running unsigned integer sum.

register_int_sum_aggregator (agg_value_name, int_function, [max_sum|, [width])

agg_value_name
The name of the new aggregate value field, a string. The agg_value_name must be unique among all
aggregate values, but an aggregate value field and key field can have the same name.

int_function
int = int_function(silk. RWRec). A function that accepts a silk. RWRec object as its sole argument,
and returns an unsigned integer which represents the value that should be added to the running sum
for the current bin.

mazr_sum
The maximum possible sum. This parameter is optional; if not specified, the default is 2764-1
(18,446,744,073,709,551,615).

width

The column width to use when displaying the aggregate value. This parameter is optional. The default
is the number of digits necessary to display maz_sum.

48 SiLK-3.24.0

PySiLK Reference Guide silkpython

Integer maximum aggregate value field

The following function is used to create an aggregate value field that maintains the maximum unsigned
integer value.

register_int_max_aggregator(agg_value_name, int_function, [maz_maz], [width))

agg_value_name
The name of the new aggregate value field, a string. The agg_value_name must be unique among all
aggregate values, but an aggregate value field and key field can have the same name.

wnt_function
int = int_function(silk. RWRec). A function that accepts a silk. RWRec object as its sole argument,
and returns an integer which represents the value that should be considered for the current highest
value for the current bin.

mar_max
The maximum possible value for the maximum. This parameter is optional; if not specified, the default
is 2°64-1 (18,446,744,073,709,551,615).

width

The column width to use when displaying the aggregate value. This parameter is optional. The default
is the number of digits necessary to display maz_maz.

Integer minimum aggregate value field
This function is used to create an aggregate value field that maintains the minimum unsigned integer value.

register_int_min_aggregator(agg-value_name, int_function, [maz-min|, [width])

agg_value_name
The name of the new aggregate value field, a string. The agg_value_name must be unique among all
aggregate values, but an aggregate value field and key field can have the same name.

wnt_function

int = int_function(silk. RWRec). A function that accepts a silk. RWRec object as its sole argument,
and returns an integer which represents the value that should be considered for the current lowest value
for the current bin.

mazr_min
The maximum possible value for the minimum. When this optional parameter is not specified, the
default is 2764-1 (18,446,744,073,709,551,615).

width
The column width to use when displaying the aggregate value. This parameter is optional. The default

is the number of digits necessary to display maz_min.

SiLK-3.24.0 49

silkpython PySiLK Reference Guide

Advanced field registration function

The previous section provided functions to register a key field or an aggregate value field when dealing with
common objects. When you need to use a complex object, or you want more control over how the object is
handled in PySiLK, you can use the register_field() function described in this section.

Many of the arguments to the register_field() function are callback functions that you must create and
that the application will invoke. (The simple registration functions above have already taken care of defining
these callback functions.)

Often the callback functions for handling fields will either take (as a parameter) or return a representation
of a numeric value that can be processed from C. The most efficient way to handle these representations is
as a string containing binary characters, including the null byte. We will use the term ”byte sequence” for
these representations; other possible terms include ”array of bytes”, ”byte strings”, or ”binary values”. For
hints on creating byte sequences from Python, see the Byte sequences section below.

To define a new field or aggregate value, the user calls:

register_field(field-name, [add_rec_to_bin=add_rec_to_bin_func,] [bin_compare=bin_compare_func,)
[bin_bytes=bin_bytes_value,) [bin_merge="bin_merge_func,) [bin_to_text=bin_to_text_func,)
[column_width=column_width_value,] [description=description_string,] [initial_value=initial_value,]
[initialize=initialize_func,] [rec_to_bin=rec_to_bin_func,] [rec_to_text=rec_to_text_func])

Although the keyword arguments to register_field() are all optional from Python’s perspective, certain
keyword arguments must be present before an application will define the key or aggregate value. The
following table summarizes the keyword arguments used by each application. An F means the argument is
required for a key field, an A means the argument is required for an aggregate value field, f and a mean the
application will use the argument for a key field or an aggregate value if the argument is present, and a dot
means the application completely ignores the argument.

rwcut rwgroup rwsort rwstats rwuniq

add_rec_to_bin . . . A A

bin_compare . . . A .

bin_bytes . F F F,A F,A
bin_merge . . . A A

bin_to_text . . . F,A F,A
column_width F . . F,A F,A
description f f f f,a f,a
initial_value . . . a a

initialize f f f f,a f,a
rec_to_bin . F F F F

rec_to_text F

The following sections describe how to use register_field() in each application.

rwcut usage

The purpose of rwcut(1) is to print attributes of (or attributes derived from) every SiLK record it reads as
input. A plug-in used by rwcut must produce a printable (textual) attribute from a SiLK record. To define
a new attribute, the register_field() method should be called as shown:

register_field(field_name, column_width=column_width_value, rec_to_text=rec_to_text_func,
[description=description_string,| [initialize=initialize_func])

50 SiLK-3.24.0

PySiLK Reference Guide silkpython

field_name

Names the field being defined, a string. If you attempt to add a field that already exists, you will get
an an error message. To display the field, include field_name in the argument to the --fields switch.

column_width_value

Specifies the length of the longest printable representation. rwcut will use it as the width for the
field_name column when columnar output is selected.

rec_to_text_func

string = rec_to_text_func(silk. RWRec). Names a callback function that takes a silk. RWRec object
as its sole argument and produces a printable representation of the field being defined. The length
of the returned text should not be greater than column_width_value. If the value returned from this
function is not a string, the returned value is converted to a string by the Python str() function.

description_string

Provides a string giving a brief description of the field, suitable for printing in --help-fields output.
This argument is optional.

initialize_func

initialize_func(). Names a callback function that will be invoked after the application has completed
its argument processing, and just before it opens the first input file. This function is only called when
--fields includes field_name. The function takes no arguments and its return value is ignored. This
argument is optional.

If the rec_to_text argument is not present, the register_field() function will do nothing when called from
rwcut. If the column _width argument is missing, rwcut will complain that the textual width of the
plug-in field is 0.

rwgroup and rwsort usage

The rwsort(1) tool sorts SiLK records by their attributes or attributes derived from them. rwgroup(1)
reads sorted SiLK records and writes a common value into the next hop IP field of all records that have
common attributes. The output from both of these tools is a stream of SiLK records (the output typically
includes every record that was read as input). A plug-in used by these tools must return a value that the
application can use internally to compare records. To define a new field that may be included in the --id-
fields switch to rwgroup or the --fields switch to rwsort, the register_field() method should be invoked
as follows:

register_field(field_name, bin_bytes=bin_bytes_value, rec_to_bin=rec_to_bin_func,
[description=description_string,| [initialize=initialize_func])

field_name
Names the field being defined, a string. If you attempt to add a field that already exists, you will get
an an error message. To have rwgroup or rwsort use this field, include field_name in the argument
to --id-fields or --fields.

bin_bytes_value

Specifies a positive integer giving the length, in bytes, of the byte sequence that the rec_to_bin_func()
function produces; the byte sequence must be exactly this length.

SiLK-3.24.0 o1

silkpython PySiLK Reference Guide

rec_to_bin_func

byte-sequence = rec_to_bin_func(silk. RWRec). Names a callback function that takes a silk. RWRec
object and returns a byte sequence that represents the field being defined. The returned value should
be exactly bin_bytes_value bytes long. For proper grouping or sorting, the byte sequence should be
returned in network byte order (i.e., big endian).

description_string

Provides a string giving a brief description of the field, suitable for printing in --help-fields output.
This argument is optional.

initialize_func

initialize_func(). Names a callback function that will be invoked after the application has completed
its argument processing, and just before it opens the first input file. This function is only called when
field_name is included in the list of fields. The function takes no arguments and its return value is
ignored. This argument is optional.

If the rec_to_bin argument is not present, the register_field() function will do nothing when called from
rwgroup or rwsort. If the bin_bytes argument is missing, rwgroup or rwsort will complain that the
binary width of the plug-in field is 0.

rwstats and rwuniq usage

rwstats(1) and rwuniq(1) group SiLK records into bins based on key fields. Once a record is matched to
a bin, the record is used to update the aggregate values (e.g., the sum of bytes) that are being computed,
and the record is discarded. Once all records have been processed, the key fields and the aggregate values
are printed.

Key Field

A plug-in used by rwstats or rwuniq for creating a new key field must return a value that the application
can use internally to compare records, and there must be a function that converts that value to a printable
representation. The following invocation of register_field() will produce a key field that can be used in the
--fields switch of rwstats or rwuniq:

register_field(field_name, bin_bytes=bin_bytes_value, bin_to_text=bin_to_text_func, col-
umn_width=column_width_value, rec_to_bin=rec_to_bin_func, [description=description_string,|
[initialize=initialize_func])

The arguments are:

field_name

Contains the name of the field being defined, a string. If you attempt to add a field that already
exists, you will get an an error message. The field will only be active when field_name is specified as
an argument to --fields.

bin_bytes_value

Contains a positive integer giving the length, in bytes, of the byte sequence that the rec_to_bin_func()
function produces and that the bin_to_text_func() function accepts. The byte sequences must be
exactly this length.

bin_to_text_func

52 SiLK-3.24.0

PySiLK Reference Guide silkpython

string = bin_to_text_func(byte-sequence). Names a callback function that takes a byte sequence,
of length bin_bytes_value, as produced by the rec_to_bin_func() function and returns a printable
representation of the byte sequence. The length of the text should be no longer than the value specified
by column_width. If the value returned from this function is not a string, the returned value is
converted to a string by the Python str() function.

column_width_value

Contains a positive integer specifying the length of the longest textual field that the
bin_to_text_func() callback function returns. This length will used as the column width when colum-
nar output is requested.

rec_to_bin_func

byte-sequence = rec_to_bin_func(silk. RWRec). Names a callback function that takes a silk. RWRec
object and returns a byte sequence that represents the field being defined. The returned value should
be exactly bin_bytes_value bytes long. For proper sorting, the byte sequence should be returned in
network byte order (i.e., big endian).

description_string
Provides a string giving a brief description of the field, suitable for printing in --help-fields output.
This argument is optional.

wnitialize_func

initialize_func(). Names a callback function that is called after the command line arguments have
been processed, and before opening the first file. This function is only called when --fields includes
field_name. The function takes no arguments and its return value is ignored. This argument is optional.

Aggregate Value

A plug-in used by rwstats or rwuniq for creating a new aggregate value must be able to use a SiLK record
to update an aggregate value, take two aggregate values and merge them to a new value, and convert that
aggregate value to a printable representation. To use an aggregate value for ordering the bins in rwstats, the
plug-in must also define a function to compare two aggregate values. The aggregate values are represented
as byte sequences.

To define a new aggregate value in rwstats, the user calls:

register_field (agg_value_name, add_rec_to_bin=add_rec_to_bin_func, bin_bytes=bin_bytes_value,
bin_merge=bin_merge_func, bin_to_text=bin_to_text_func, column_width=column_width_value,
[bin_compare=bin_compare_func,) [description=description_string,] [initial_value=initial_value,)

[initialize=initialize_func])
The call to define a new aggregate value in rwuniq is nearly identical:

register_field (agg_value_name, add_rec_to_bin=add_rec_to_bin_func, bin_bytes=bin_bytes_value,
bin_merge=bin_merge_func, bin_to_text=bin_to_text_func, column_width=column_width_value,
[description=description_string,| [initial_value=initial_value,] [initialize=initialize_func|)

The arguments are:

agg_value_name

Contains the name of the aggregate value field being defined, a string. The name of value must be
unique among all aggregate values, but an aggregate value field and key field can have the same name.
The value will only be active when agg_value_name is specified as an argument to --values.

SiLK-3.24.0 53

silkpython PySiLK Reference Guide

add_rec_to_bin_func

byte-sequence = add_rec_to_bin_func(silk. RWRec, byte-sequence). Names a callback function whose
two arguments are a silk. RWRec object and an aggregate value. The function updates the aggre-
gate value with data from the record and returns a new aggregate value. Both aggregate values are
represented as byte sequences of exactly bin_bytes_value bytes.

bin_bytes_value

Contains a positive integer representing the length, in bytes, of the binary aggregate value used by the
various callback functions. Every byte sequence for this field must be exactly this length, and it also
governs the length of the byte sequence specified by initial_value.

bin_merge_func

byte-sequence = bin_merge_func(byte-sequence, byte-sequence). Names a callback function which
returns the result of merging two binary aggregate values into a new binary aggregate value. This
merge function will often be addition; however, if the aggregate value is a bitmap, the result of merge
function could be the union of the bitmaps. The function should take two byte sequence arguments
and return a byte sequence, where all byte sequences are exactly bin_bytes_value bytes in length. If
merging the aggregate values is not possible, the function should throw an exception. This function
is used when the data structure used by rwstats or rwuniq runs out memory. When that happens,
the application writes its current state to a temporary file, empties its buffers, and continues reading
records. Once all records have been processed, the application needs to merge the temporary files
to produce the final output. The bin_merge_func() function is used when merging these binary
aggregate values.

bin_to_text_func

string = bin_to_text_func(byte-sequence). Names a callback function that takes a byte sequence
representing an aggregate value as an argument and returns a printable representation of that aggregate
value. The byte sequence input to bin_to_text_func() will be exactly bin_bytes_value bytes long. The
length of the text should be no longer than the value specified by column_width. If the value
returned from this function is not a string, the returned value is converted to a string by the Python
str() function.

column_width_value

Contains a positive integer specifying the length of the longest textual field that the
bin_to_text_func() callback function returns. This length will used as the column width when colum-
nar output is requested.

bin_compare_func

int = bin_compare_func(byte-sequence, byte-sequence). Names a callback function that is called
with two aggregate values, each represented as a byte sequence of exactly bin_bytes_value bytes. The
function returns (1) an integer less than 0 if the first argument is less than the second, (2) an integer
greater than 0 if the first is greater than the second, or (3) 0 if the two values are equal. This function
is used by rwstats to sort the bins into top-N order.

description_string
Provides a string giving a brief description of the aggregate value, suitable for printing in --help-fields
output. This argument is optional.

initial_value

Specifies a byte sequence representing the initial state of the binary aggregate value. This byte sequence
must be of length bin_bytes_value bytes. If this argument is not specified, the aggregate value is set to
a byte sequence containing bin_bytes_value null bytes.

54 SiLK-3.24.0

PySiLK Reference Guide silkpython

initialize_func

initialize func(). Names a callback function that is called after the command line arguments have
been processed, and before opening the first file. This function is only called when --values includes
agg-value_name. The function takes no arguments and its return value is ignored. This argument is
optional.

Byte sequences

The rwgroup, rwsort, rwstats, and rwuniq programs make extensive use of "byte sequences” (a.k.a.,
7array of bytes”, "byte strings”, or "binary values”) in their plug-in functions. The byte sequences are used
in both key fields and aggregate values.

When used as key fields, the values can represent uniqueness or indicate sort order. Two records with the
same byte sequence for a field will be considered identical with respect to that field. When sorting, the byte
sequences are compared in network byte order. That is, the most significant byte is compared first, followed
by the next-most-significant byte, etc. This equates to string comparison starting with the left-hand side of
the string.

When used as an aggregate field, the byte sequences are expected to behave more like numbers, with the
ability to take binary record and add a value to it, or to merge (e.g., add) two byte sequences outside the
context of a SiLK record.

Every byte sequence has an associated length, which is passed into the register_field() function in the
bin_bytes argument. The length determines how many values the byte sequence can represent. A byte
sequence with a length of 1 can represent up to 256 unique values (from 0 to 255 inclusive). A byte sequence
with a length of 2 can represent up to 65536 unique values (0 to 65535). To generalize, a byte sequence with
a length of n can represent up to 2" (8n) unique values (0 to 2°(8n)-1).

How byte sequences are represented in Python depends on the version of Python. Python represents a
sequence of characters using either the bytes type (introduced in 2.6) or the unicode type. The bytes type
can encode byte sequences while the unicode type cannot. In Python 2, the str (string) type was an alias
for bytes, so that any Python 2 string is in effect a byte sequence. In Python 3, str is an alias for unicode,
thus Python 3 strings are unicode objects and cannot represent byte sequences.

Python does not make conversions between integers and byte sequences particularly natural. As a result,
here are some pointers on how to do these conversions:

Use the bytes() and ord() methods

If you converting a single integer value that is less than 256, the easiest way to convert it to a byte sequence
is to use the bytes() function; to convert it back, use the ord() function.

seq
num

bytes ([num])
ord(seq)

The bytes() function takes a list of integers between 0 and 255 inclusive, and returns a bytes sequence of
the length of that list. To convert a single byte, use a list of a single element. The ord() function takes a
byte sequence of a single byte and returns an integer between 0 and 255.

Note: In versions of Python earlier than 2.6, use the chr() function instead of the bytes() function. It takes
a single number as its argument. chr() will work in Python 2.6 and 2.7 as well, but there are compatibility
problems in Python 3.x.

Use the struct module

SiLK-3.24.0 95

silkpython PySiLK Reference Guide

When the value you are converting to a byte sequence is 255 or greater, you have to go with another option.
One of the simpler options is to use Python’s built-in struct module. With this module, you can encode a
number or a set of numbers into a byte sequence and convert the result back using a struct.Struct object.
Encoding the numbers to a byte sequence uses the object’s pack() method. To convert that byte sequence
back to the number or set of numbers, use the object’s unpack() method. The length of the resulting byte
sequences can be found in the size attribute of the struct.Struct() object. A formatting string is used to
indicate how the numbers are encoded into binary. For example:

import struct

Set up the format for two 64-bit numbers

two64 = struct.Struct("!'QQ)

Encode two 64-bit numbers as a byte sequence

seq = two64.pack(numl, num2)

#Unpack a byte sequence back into two 64-bit numbers
(numl, num2) = two64.unpack(seq)

#Length of the encoded byte sequence

bin_bytes = two64.size

In the above, Q represents a single unsigned 64-bit number (an unsigned long long or quad). The ! at the
beginning of the string forces network byte order. (For sort comparison purposes, always pack in network
byte order.)

Here is another example, which encodes a signed 16-bit integer and a floating point number:

import struct

Set up the format for a 16-bit signed integer and a float

obj = struct.Struct("!hf")

#Encode a 16-bit signed integer and a float as a byte sequence

seq = obj.pack(intval, floatval)

#Unpack a byte sequence back into a 16-bit signed integer and a float
(intval, floatval) = obj.unpack(seq)

#Length of the encoded byte sequence

bin_bytes = obj.size

Note that unpack() returns a sequence. When unpacking a single value, assign the result of unpack to
(variable_name,), as shown:

import struct

u32 = struct.Struct("!I")

#Encode an unsigned 32-bit integer as a byte sequence

seq = u32.pack(numl)

#Unpack a byte sequence back into a unsigned 32-bit integer
(numl,) = struct.unpack(seq)

#Length of the encoded byte sequence

bin_bytes = u32.size

56 SiLK-3.24.0

PySiLK Reference Guide silkpython

The full list of codes can be found in the Python library documentation for the struct module, http:
//docs.python.org/library /struct.html.

Note: Python versions prior to 2.5 do not include support for the struct.Struct object. For older versions
of Python, you have to use struct’s functional interface. For example:

import struct

#Encode a 16-bit signed integer and a float as a byte sequence

seq = struct.pack("!hf", intval, floatval)

#Unpack a byte sequence back into a 16-bit signed integer and a float
(intval, floatval) = struct.unpack("!hf", seq)

#Length of the encoded byte sequence

bin_bytes = struct.calcsize("'!hf")

This method works in Python 2.5 and above as well, but is inherently slower, as it requires re-evaluation of
the format string for each packing and unpacking operation. Only use this if there is a need to inter-operate
with older versions of Python.

Use the array module

The Python array module provides another way to create byte sequences. Beware that the array module
does not provide an automatic way to encode the values in network byte order.

OPTIONS

The following options are available when the SiLK Python plug-in is used from rwfilter.

--python-fille=FILENAME

Load the Python file FILENAME. The Python code may call register_filter() multiple times to de-
fine new partitioning functions that takes a silk. RWRec object as an argument. The return value
of the function determines whether the record passes the filter. For backwards compatibility, if reg-
ister_filter() is not called and a function named rwfilter() exists, that function is automatically
registered as the filtering function. Multiple --python-file switches may be used to load multiple
plug-ins.

--python-expr=PYTHON_EXPRESSION
Pass the SiLK Flow record if the result of the processing the record with the specified
PYTHON_EXPRESSION is true. The expression is evaluated in the following context:
e The record is represented by the variable named rec, which is a silk. RWRec object.

e There is an implicit from silk import * in effect.

The following options are available when the SiLK Python plug-in is used from rwcut, rwgroup, rwsort,
rwstats, or rwuniq:

--python-file=FILENAME

Load the Python file FILENAME. The Python code may call register_field() multiple times to define
new fields for use by the application. When used with rwstats or rwuniq, the Python code may call
register_field() multiple times to create new aggregate fields. Multiple --python-file switches may
be used to load multiple plug-ins.

SiLK-3.24.0 57

http://docs.python.org/library/struct.html
http://docs.python.org/library/struct.html

silkpython PySiLK Reference Guide

EXAMPLES

In the following examples, the dollar sign ($) represents the shell prompt. The text after the dollar sign
represents the command line. Lines have been wrapped for improved readability, and the back slash (\) is
used to indicate a wrapped line.

rwfilter --python-expr

Suppose you want to find traffic destined to a particular host, 10.0.0.23, that is either ICMP or coming from
1434 /udp. If you attempt to use:

$ rwfilter --daddr=10.0.0.23 --proto=1,17 --sport=1434 \
--pass=outfile.rw flowrec.rw

the --sport option will not match any of the ICMP traffic, and your result will not contain ICMP records.
To avoid having to use two invocations of rwfilter, you can use the SiLK Python plugin to do the check in
a single pass:

~

$ rwfilter --daddr=10.0.0.23 --proto=1,17
--python-expr ’rec.protocol==1 or rec.sport==1434’ \
--pass=outfile.rw flowrec.rw

Since the Python code is slower than the C code used internally by rwfilter, we want to limit the number
of records processed in Python as much as possible. We use the rwfilter switches to do the address check
and protocol check, and in Python we only need to check whether the record is ICMP or if the source port
is 1434 (if the record is not ICMP we know it is UDP because of the --proto switch).

rwfilter --python-file

To see all records whose protocol is different from the preceding record, use the following Python code. The
code also prints a message to the standard output on completion.

import sys

def filter(rec):
global lastproto
if rec.protocol != lastproto:
lastproto = rec.protocol
return True
return False

def initialize():
global lastproto
lastproto = None

def finalize():
sys.stdout.write("Finished processing records.\n")

58 SiLK-3.24.0

PySiLK Reference Guide silkpython

register_filter(filter, initialize = initialize, finalize = finalize)
The preceding file, if called lastproto.py, can be used like this:
$ rufilter --python-file lastproto.py --pass=outfile.rw flowrec.rw

Note: Be careful when using a Python plug-in to write to the standard output, since the Python output
could get intermingled with the output from --pass=stdout and corrupt the SiLK output file. In general,
printing to the standard error is safer.

Command line switch

The following code registers the command line switch count-protocols. This switch is similar to the
standard --protocol switch on rwfilter, in that it passes records whose protocol matches a value specified
in a list. In addition, when rwfilter exits, the plug-in prints a count of the number of records that matched
each specified protocol.

import sys
from silk.plugin import *

pro_count = {}

def proto_count(rec):
global pro_count
if rec.protocol in pro_count.keys():
pro_count [rec.protocol] += 1
return True
return False

def print_counts():
for p,c in pro_count.iteritems():
sys.stderr.write("%3d[%10dI\n" % (p, <))

def parse_protocols(protocols):
global pro_count
for p in protocols.split(","):
pro_count [int(p)] = 0
register_filter(proto_count, finalize = print_counts)

register_switch("count-protocols", handler=parse_protocols,
help="Like --proto, but prints count of flow records")

When this code is saved to the file count-proto.py, it can be used with rwfilter as shown to get a count of
TCP and UDP flow records:

~

$ rufilter --start-date=2008/08/08 --type=out
--python-file=count-proto.py —-—-count-proto=6,17
--print-statistics=/dev/null

~

rwfilter does not know that the plug-in will be generating output, and rwfilter will complain unless an
output switch is given, such as --pass or --print-statistics. Since our plug-in is printing the data we want,
we send the output to /dev/null.

SiLK-3.24.0 99

silkpython PySiLK Reference Guide

Create integer key field with simple API
This example creates a field that contains the sum of the source and destination port. While this value may

not be interesting to display in rwcut, it provides a way to sort fields so traffic between two low ports will
usually be sorted before traffic between a low port and a high port.

def port_sum(rec):
return rec.sport + rec.dport

register_int_field("port-sum", port_sum)

If the above code is saved in a file named portsum.py, it can be used to sort traffic prior to printing it
(low-port to low-port will appear first):

$ rwfilter --start-date=2008/08/08 --type=out,outweb \
--proto=6,17 --pass=stdout \
| rwusort --python-file=portsum.py --fields=port-sum \

| rwcut

To see high-port to high-port traffic first, reverse the sort:

$ rufilter --start-date=2008/08/08 --type=out,outweb \
--proto=6,17 --pass=stdout \
| rwsort --python-file=portsum.py --fields=port-sum \
--reverse \

| rwcut

Create IP key field with simple API

SiLK stores uni-directional flows. For network conversations that cross the network border, the source and
destination hosts are swapped depending on the direction of the flow. For analysis, you often want to know
the internal and external hosts.

The following Python plug-in file defines two new fields: internal-ip will display the destination IP for an
incoming flow, and the source IP for an outgoing flow, and external-ip field shows the reverse.

import silk

for convenience, create lists of the types
in_types = [’in’, ’inweb’, ’innull’, ’inicmp’]
out_types = [’out’, ’outweb’, ’outnull’, ’outicmp’]

def internal (rec):
"Returns the IP Address of the internal side of the connection"
if rec.typename in out_types:
return rec.sip
else:
return rec.dip

60 SiLK-3.24.0

PySiLK Reference Guide silkpython

def external (rec):
"Returns the IP Address of the external side of the connection"
if rec.typename in in_types:
return rec.sip
else:
return rec.dip

register_ip_field("internal-ip", internal)
register_ip_field("external-ip", external)

If the above code is saved in a file named direction.py, it can be used to show the internal and external TP
addresses and flow direction for all traffic on 1434 /udp from Aug 8, 2008.

$ rwfilter --start-date=2008/08/08 --type=all

--proto=17 --aport=1434 --pass=stdout

| rwcut --python-file direction.py \
--fields internal-ip,external-ip,3-12

~ -

Create enumerated key field with simple API

This example expands the previous example. Suppose instead of printing the internal and external IP address,
you wanted to group by the label associated with the internal and external addresses in a prefix map file.
The pmapfilter(3) manual page specifies how to print labels for source and destination IP addresses, but
it does not support internal and external IPs.

Here we take the previous example, add a command line switch to specify the path to a prefix map file, and
have the internal and external functions return the label.

import silk

for convenience, create lists of the types
in_types = [’in’, ’inweb’, ’innull’, ’inicmp’]
out_types = [’out’, ’outweb’, ’outnull’, ’outicmp’]

handler for the --int-ext-pmap command line switch

def set_pmap(arg):
global pmap
pmap = silk.PrefixMap(arg)
labels = pmap.values()
width = max(len(x) for x in labels)
register_enum_field("internal-label", internal, width, labels)
register_enum_field("external-label", external, width, labels)

def internal(rec):
"Returns the label for the internal side of the connection"
global pmap
if rec.typename in out_types:
return pmap[rec.sip]
else:
return pmap[rec.dip]

SiLK-3.24.0 61

silkpython PySiLK Reference Guide

def external (rec):
"Returns the label for the external side of the connection"
global pmap
if rec.typename in in_types:
return pmap[rec.sip]
else:
return pmap[rec.dip]

register_switch("int-ext-pmap", handler=set_pmap,
help="Prefix map file for internal-label, external-label")

Assuming the above is saved in the file int-ext-pmap.py, the following will group the flows by the internal
and external labels contained in the file ip-map.pmap.

$ rwfilter --start-date=2008/08/08 --type=all
--proto=17 --aport=1434 --pass=stdout
| rwuniq --python-file int-ext-pmap.py
--int-ext-pmap ip-map.pmap
--fields internal-label,external-label

s

Create minimum/maximum integer value field with simple API

The following example will create new aggregate fields to print the minimum and maximum byte values:

register_int_min_aggregator ("min-bytes", lambda rec: rec.bytes,
(1 << 32) - 1)

register_int_max_aggregator ("max-bytes", lambda rec: rec.bytes,
(1 <<32) -1

The lambda expression allows one to create an anonymous function. In this code, we need to return the
number of bytes for the given record, and we can easily do that with the anonymous function. Since the
SiLK bytes field is 32 bits, the maximum 32-bit number is passed the registration functions.

Assuming the code is stored in a file bytes.py, it can be used with rwuniq to see the minimum and maximum
byte counts for each source IP address:

$ rwuniq --python-file=bytes.py --fields=sip \
--values=records,bytes,min-bytes,max-bytes

Create IP key for rwcut with advanced API

This example is similar to the simple IP example above, but it uses the advanced API. It also creates another
field to indicate the direction of the flow, and it does not print the IPs when the traffic does not cross the
border. Note that this code has to determine the column width itself.

import silk, os

62 SiLK-3.24.0

PySiLK Reference Guide

silkpython

for convenience, create lists of the types
in_types = [’in’, ’inweb’, ’innull’, ’inicmp’]
out_types = [’out’, ’outweb’, ’outnull’, ’outicmp’]
internal_only = [’int2int’]

external_only = [’ext2ext’]

determine the width of the IP field depending on whether SilK
was compiled with IPv6 support, and allow the IP_WIDTH environment
variable to override that width.

ip_len = 15
if silk.ipv6_enabled():
ip_len = 39

ip_len = int(os.getenv("IP_WIDTH", ip_len))

def cut_internal(rec):

"Returns the IP Address of the internal side of the connection"

if rec.typename in in_types:
return rec.dip

if rec.typename in out_types:
return rec.sip

if rec.typename in internal_only:
return "both"

if rec.typename in external_only:
return "neither"

return "unknown"

def cut_external(rec):

"Returns the IP Address of the external side of the connection"

if rec.typename in in_types:
return rec.sip

if rec.typename in out_types:
return rec.dip

if rec.typename in internal_only:
return "neither"

if rec.typename in external_only:
return "both"

return "unknown"

def internal_external_direction(rec):
"""Generates a string pointing from the sip to the dip, assuming
internal is on the left, and external is on the right."""
if rec.typename in in_types:
return "<---"
if rec.typename in out_types:
return "--->"
if rec.typename in internal_only:
return "-><-"
if rec.typename in external_only:
return "<-->"
return "7777"

SiLK-3.24.0

63

silkpython PySiLK Reference Guide

register_field("internal-ip", column_width = ip_len,
rec_to_text = cut_internal)

register_field("external-ip", column_width = ip_len,
rec_to_text = cut_external)

register_field("int_to_ext", column_width = 4,
rec_to_text = internal_external_direction)

The cut_internal() and cut_external() functions may return an IPAddr object instead of a string. For
those cases, the Python str() function is invoked automatically to convert the IPAddr to a string.

If the above code is saved in a file named direction.py, it can be used to show the internal and external TP
addresses and flow direction for all traffic on 1434 /udp from Aug 8, 2008.

$ rwfilter --start-date=2008/08/08 --type=all \

--proto=17 --aport=1434 --pass=stdout \

| rwcut --python-file direction.py \
--fields internal-ip,int_to_ext,external-ip,3-12

Create integer key field for rwsort with the advanced API

The following example Python plug-in creates one new field, lowest_port, for use in rwsort. Using this
field will sort records based on the lesser of the source port or destination port; for example, flows where
either the source or destination port is 22 will occur before flows where either port is 25. This example shows
using the Python struct module with multiple record attributes.

import struct
portpair = struct.Struct("!'HH")

def lowest_port(rec):
if rec.sport < rec.dport:
return portpair.pack(rec.sport, rec.dport)
else:
return portpair.pack(rec.dport, rec.sport)

register_field("lowest_port", bin_bytes = portpair.size,
rec_to_bin = lowest_port)

To use this example to sort the records in flowrec.rw, one saves the code to the file sort.py and uses it as
shown:

$ rwsort --python-file=sort.py --fields=lowest_port \
flowrec.rw > outfile.rw

Create integer key for rwstats and rwuniq with advanced API

The following example defines two key fields for use by rwstats or rwuniq: prefixed-sip and
prefixed-dip. Using these fields, the user can count flow records based on the source and/or destina-
tion IPv4 address blocks (CIDR blocks). The default CIDR, prefix is 16, but it can be changed by specifying
the --prefix switch that the example creates. This example uses the Python struct module to convert
between the IP address and a binary string.

64 SiLK-3.24.0

PySiLK Reference Guide silkpython

import os, struct
from silk import *

default_prefix = 16
u32 = struct.Struct("!L")

def set_mask(prefix):
global mask
mask = OxFFFFFFFF
the value we are handed is a string
prefix = int(prefix)
if 0 < prefix < 32:
mask = mask ~ (mask >> prefix)

Convert from an IPv4Addr to a byte sequence
def cidr_to_bin(ip):
if ip.is_ipv6():
raise ValueError, "Does not support IPv6"
return u32.pack(int(ip) & mask)

Convert from a byte sequence to an IPv4Addr
def cidr_bin_to_text(string):

(num,) = u32.unpack(string)

return IPv4Addr (num)

register_field("prefixed-sip", column_width = 15,
rec_to_bin = lambda rec: cidr_to_bin(rec.sip),
bin_to_text = cidr_bin_to_text,
bin_bytes = u32.size)

register_field("prefixed-dip", column_width = 15,
rec_to_bin = lambda rec: cidr_to_bin(rec.dip),
bin_to_text = cidr_bin_to_text,
bin_bytes = u32.size)

register_switch("prefix", handler=set_mask,
help="Set prefix for prefixed-sip/prefixed-dip fields")

set_mask(default_prefix)
The lambda expression allows one to create an anonymous function. In this code, the lambda function
is used to pass the appropriate IP address into the cidr_to_bin() function. To write the code without the

lambda would require separate functions for the source and destination IP addresses:

def sip_cidr_to_bin(rec):
return cidr_to_bin(rec.sip)

def dip_cidr_to_bin(rec):
return cidr_to_bin(rec.dip)

SiLK-3.24.0 65

silkpython PySiLK Reference Guide

The lambda expression helps to simplify the code.

If the code is saved in the file mask.py, it can be used as follows to count the number of flow records seen
in the /8 of each source IP address. The flow records are read from flowrec.rw. The --ipv6-policy=ignore
switch is used to restrict processing to IPv4 addresses.

$ rwuniq --ipv6-policy=ignore --python-file mask.py \
--prefix 8 --fields prefixed-sip flowrec.rw

Create new average bytes value field for rwstats and rwuniq

The following example creates a new aggregate value that can be used by rwstats and rwuniq. The value
is avg-bytes, a value that calculates the average number of bytes seen across all flows that match the key.
It does this by maintaining running totals of the byte count and number of flows.

import struct

fmt = struct.Struct("QQ")

initial = fmt.pack(0, 0)

textsize = 15

textformat = "%%%d.2f" % textsize

add byte and flow count from ’rec’ to ’current’
def avg_bytes(rec, current):

(total, count) = fmt.unpack(current)

return fmt.pack(total + rec.bytes, count + 1)

return printable representation
def avg_to_text(bin):
(total, count) = fmt.unpack(bin)
return textformat) (float(total) / count)

merge two encoded values.
def avg_merge(recl, rec2):
(totall, countl) = fmt.unpack(recl)
(total2, count2) = fmt.unpack(rec2)
return fmt.pack(totall + total2, countl + count2)

compare two encoded values
def avg_compare(recl, rec2):
(totall, countl) = fmt.unpack(recl)
(total2, count2) = fmt.unpack(rec2)
Python 2:
#return cmp((float(totall) / countl), (float(total2) / count2))
Python 3:
avgl = float(totall) / countl
avg2 = float(total2) / count2
if avgl < avg2:
return -1
return avgl > avg2

66 SiLK-3.24.0

PySiLK Reference Guide silkpython

register_field("avg-bytes",

column_width = textsize,
bin_bytes = fmt.size,
add_rec_to_bin = avg_bytes,
bin_to_text = avg_to_text,
bin_merge = avg_merge,
bin_compare = avg_compare,
initial_value = initial)

To use this code, save it as avg-bytes.py, specify the name of the Python file in the --python-file switch,
and list the field in the --values switch:

$ rwuniq --python-file=avg-bytes.py --fields=sip \
--values=avg-bytes infile.rw

This particular example will compute the average number of bytes per flow for each distinct source IP address
in the file infile.rw.

Create integer key field for all tools that use fields

The following example Python plug-in file defines two fields, sport-service and dport-service. These
fields convert the source port and destination port to the name of the ”service” as defined in the file
/etc/services; for example, port 80 is converted to ”http”. This plug-in can be used by any of rwcut,
rwgroup, rwsort, rwstats, or rwunigq.

import os,socket,struct
ul6é = struct.Struct("!'H")

utility function to convert number to a service name,
or to a string if no service is defined
def num_to_service(num):
try:
serv = socket.getservbyport (num)
except socket.error:
serv = "%d" % num
return serv

convert the encoded port to a service name
def bin_to_service(bin):

(port,) = ul6.unpack(bin)

return num_to_service(port)

width of service columns can be specified with the
SERVICE_WIDTH environment variable; default is 12
col_width = int(os.getenv("SERVICE_WIDTH", 12))

register_field("sport-service", bin_bytes = ul6.size,
column_width = col_width,

SiLK-3.24.0 67

silkpython PySiLK Reference Guide

rec_to_text = lambda rec: num_to_service(rec.sport),
rec_to_bin = lambda rec: ul6.pack(rec.sport),
bin_to_text = bin_to_service)

register_field("dport-service", bin_bytes = ul6.size,
column_width = col_width,
rec_to_text = lambda rec: num_to_service(rec.dport),
rec_to_bin = lambda rec: ul6.pack(rec.dport),
bin_to_text = bin_to_service)

If this file is named service.py, it can be used by rwcut to print the source port and its service:

$ rwcut --python-file service.py \
--fields sport,sport-service flowrec.rw

Although the plug-in can be used with rwsort, the records will be sorted in the same order as the numerical
source port or destination port.

$ rwsort --python-file service.py \
--fields sport-service flowrec.rw > outfile.rw

When used with rwuniq, it can count flows, bytes, and packets indexed by the service of the destination
port:

$ rwuniq --python-file service.py --fields dport-service \
--values=flows,bytes,packets flowrec.rw

Create human-readable fields for all tools that use fields

The following example adds two fields, hu-bytes and hu-packets, which can be used as either key fields
or aggregate value fields. The example uses the formatting capabilities of netsa-python (http://tools.netsa.
cert.org/netsa-python/index.html) to present the bytes and packets fields in a more human-friendly manner.

When used as a key, the hu-bytes field presents the value 1234567 as 1205.6Ki or as 1234.6k when the
HUMAN_USE_BINARY environment variable is set to False.

When used as a key, the hu-packets field adds a comma (or the character specified by the HU-
MAN_THOUSANDS_SEP environment variable) to the display of the packets field. The value 1234567
becomes 1,234,567.

The hu-bytes and hu-packets fields can also be used as aggregate value fields, in which case they compute
the sum of the bytes and packets, respectively, and display it as for the key field.

The code for the plug-in is shown here, and an example of using the plug-in follows the code.

import silk, silk.plugin
import os, struct
from netsa.data.format import num_prefix, num_fixed

68 SiLK-3.24.0

http://tools.netsa.cert.org/netsa-python/index.html
http://tools.netsa.cert.org/netsa-python/index.html

PySiLK Reference Guide

silkpython

Whether the use Base-2 (True) or Base-10 (False) values for

Kibi/Mebi/Gibi/Tebi/... vs Kilo/Mega/Giga/Tera/. ..
use_binary = True
if (os.getenv("HUMAN_USE_BINARY")):

if (os.getenv("HUMAN_USE_BINARY").lower() == "false"
or os.getenv("HUMAN_USE_BINARY") == "0"):
use_binary = False

else:

use_binary = True

Character to use for Thousands separator
thousands_sep = ’,’
if (os.getenv("HUMAN_THOUSANDS_SEP")):

thousands_sep = os.getenv("HUMAN_THOUSANDS_SEP")

Number of significant digits
sig_fig=5b

Use a 64-bit number for packing the bytes or packets data

fmt = struct.Struct("Q")
initial = fmt.pack(0)

Bytes functions

add_rec_to_bin

def hu_ar2b_bytes(rec, current):
global fmt
(cur,) = fmt.unpack(current)
return fmt.pack(cur + rec.bytes)

rec_to_binary
def hu_r2b_bytes(rec):
global fmt
return fmt.pack(rec.bytes)

bin_to_text

def hu_b2t_bytes(current):
global use_binary, sig_fig, fmt
(cur,) = fmt.unpack(current)

return num_prefix(cur, use_binary=use_binary, sig _fig=sig_fig)

rec_to_text
def hu_r2t_bytes(rec):
global use_binary, sig_fig

return num_prefix(rec.bytes, use_binary=use_binary, sig_fig=sig fig)

Packets functions

add_rec_to_bin

def hu_ar2b_packets(rec, current):
global fmt
(cur,) = fmt.unpack(current)
return fmt.pack(cur + rec.packets)

SiLK-3.24.0

69

silkpython PySiLK Reference Guide

rec_to_binary
def hu_r2b_packets(rec):
global fmt
return fmt.pack(rec.packets)

bin_to_text
def hu_b2t_packets(current) :
global thousands_sep, fmt
(cur,) = fmt.unpack(current)
return num_fixed(cur, dec_fig=0, thousands_sep=thousands_sep)

rec_to_text
def hu_r2t_packets(rec):
global thousands_sep
return num_fixed(rec.packets, dec_fig=0, thousands_sep=thousands_sep)

Non-specific functions
bin_compare
def hu_bin_compare(curl, cur2):
if (curl < cur2):
return -1
return (curl > cur2)

bin_merge

def hu_bin_merge(currentl, current2):
global fmt
(curl,) = fmt.unpack(currentl)
(cur2,) = fmt.unpack(current2)
return fmt.pack(curl + cur?2)

Register the fields

register_field("hu-bytes", column_width=10, bin_bytes=fmt.size,
rec_to_text=hu_r2t_bytes, rec_to_bin=hu_r2b_bytes,
bin_to_text=hu_b2t_bytes, add_rec_to_bin=hu_ar2b_bytes,
bin_merge=hu_bin_merge, bin_compare=hu_bin_compare,
initial_value=initial)

register_field("hu-packets", column_width=10, bin_bytes=fmt.size,
rec_to_text=hu_r2t_packets, rec_to_bin=hu_r2b_packets,
bin_to_text=hu_b2t_packets, add_rec_to_bin=hu_ar2b_packets,
bin_merge=hu_bin_merge, bin_compare=hu_bin_compare,
initial_value=initial)

This shows an example of the plug-in’s invocation and output when the code below is stored in the file
human.py.

$ rwstats --count=5 --no-percent --python-file=human.py \
--fields=proto,hu-bytes,hu-packets \
--values=records,hu-bytes,hu-packets data.rw

INPUT: 501876 Records for 305417 Bins and 501876 Total Records

70 SiLK-3.24.0

PySiLK Reference Guide silkpython

OUTPUT: Top 5 Bins by Records
prol hu-bytes|hu-packets| Records| hu-bytes|hu-packets]

17| 328 1] 15922 | 4.98Mi | 15,922
17| 76.0]| 1] 15482 1.12Mi| 15,482
1] 840 10/ 5895 | 4.72Mi | 58,950
171 68.0| 1] 4249 | 282K1i | 4,249
17| 67.0| 1] 4203 275K1i | 4,203

Identifying SMTP Servers

To demonstrate the use of --python-file in rwfilter(1), we walk through a Python plug-in script that
evaluates the behavior of a set of IP addresses and determines if the host is likely to be an SMTP server
or relay. We expect (based on traffic studies) that more than 85% of a legitimate SMTP server’s activity
is devoted to sending or providing mail. If we find that the host exhibits this behavior, we include the IP
address in a set called SMTP.set. Regardless of if the IP address is included in the set, we pass all records
that appear to be legitimate mail flows.

We run the rwfilter command as follows:

$ rwfilter --start-date=2008/4/21 --end-date=2008/4/21 \
-—type=out,outweb --sipset=possible_SMTP_servers.set \
--python-file=SMTP.py --print-statistics

This command first collects all records of type out and outweb that have a start date on April 21, 2008. Since
there are no additional command line options to filter records, all records are passed to the rwfilter (rec)
function in SMTP.py. rec is an instance of the object RWRec, which represent the record being passed.

The function rufilter(rec) in SMTP.py begins by importing the global variable counts and smtpports.
counts is a dictionary indexed by source IP address and contains an array of size two, where the first element
is the total number of bytes that the IP address has transferred and the second element is the number of
bytes that the source address has transferred that are likely to be related to mail delivery.

Using the source IP address from the record, the function retrieves the current byte counts from the counts
dictionary. If this is the first occurrence of the IP address, a new entry is added. The function then adds the
byte count of this record to the total byte count and determines if the record is a mail delivery message. If
it is a mail message, the function adds the bytes to the total of bytes transferred as mail and returns True.
Otherwise, a value of False is returned.

After rwfilter processes all records it calls the finalize() function, which evaluates the collection of IP
addresses. If the percentage of bytes that the host transferred in mail operations is greater than 85% of the
total bytes transferred, the IP address is added to a final set of SMTP servers. The final set of SMTP servers
is then saved to the SMTP.set file, and rwfilter exits.

from silk import =*

Collection of ports commonly used by SMTP servers
smtpports = set([25, 109, 110, 143, 220, 273, 993, 995, 113])

Minimum percentage of mail traffic before being considered a mail server
threshold = 0.85

Collection of byte counts
counts = dict()

SiLK-3.24.0 71

silkpython PySiLK Reference Guide

This function is run over all records.
Input: An instance of the RWRec class representing the

current record being processesed
Output: True or false value indicating if the record passes
or fails the filter

def rwfilter(rec):
Import the global variables needed for processing the record
global smtpports, counts

Pull data from the record
sip = rec.sip
bytes = rec.bytes

Get a reference to the current data on the IP address in question
data = counts.setdefault(sip, [0, 0])

Update the total byte count for the IP address
data[0] += bytes

Is the flow mail related? If so add the byte count to the mail bytes
if (rec.protocol == 6 and rec.sport in smtpports and

rec.packets > 3 and rec.bytes > 120):

data[1] += bytes

return True

If not mail related, fail the record
return False

This is run after all records have been processed

def finalize():
Import the global vriables needed to evaluate the results
global counts, threshold

The IP set of SMTP servers
smtp = IPSet()

Iterate through all of the IP addresses.
for ip, data in counts.iteritems():
if (float(datal[l]) / data[0]) > threshold:
smtp.add(ip)

Generate the IPset of all smtp servers.
smtp.save(’smtp.set’)

Register these functions with rwfilter
register_filter(rwfilter, finalize=finalize)

72 SiLK-3.24.0

PySiLK Reference Guide silkpython

UPGRADING LEGACY PLUGINS

Some functions were marked as deprecated in SiLK 2.0, and have been removed in SiLK 3.0.

Prior to SiLK 2.0, the register_field () function was called register_plugin_field(), and it had the following
signature:

register_plugin_field(field_name, [bin_len=bin_bytes_value,) [bin_to_text=bin_to_text_func,)
[text_len=column_width_value,| [rec_to_bin=rec_to_bin_func,| [rec_to_text=rec_to_text_func])

To convert from register_plugin_field to register_field, change text_len to column_width, and change
bin_len to bin_bytes. (Even older code may use field_len; this should be changed to column_width as
well.)

The register_filter() function was introduced in SiLK 2.0. In versions of SiLK prior to SiLK 3.0, when
rwfilter was invoked with --python-file and the named Python file did not call register_filter(), rwfilter
would search the Python input for functions named rwfilter() and finalize(). If it found the rwfilter()
function, rwfilter would act as if the file contained:

register_filter(rwfilter, finalize=finalize)

To update your pre-SiLK 2.0 rwfilter plug-ins, simply add the above line to your Python file.

ENVIRONMENT

PYTHONPATH

This environment variable is used by Python to locate modules. When --python-file or --python-
expr is specified, the application must load the Python files that comprise the PySiLK package, such
as silk/__init__.py. If this silk/ directory is located outside Python’s normal search path (for example,
in the SiLK installation tree), it may be necessary to set or modify the PYTHONPATH environment
variable to include the parent directory of silk/ so that Python can find the PySiLK module.
PYTHONVERBOSE
If the SiLK Python extension or plug-in fails to load, setting this environment variable to a non-empty
string may help you debug the issue.
SILK_ PYTHON_TRACEBACK

When set, Python plug-ins will output trace back information regarding Python errors to the standard
€rror.

SEE ALSO

pysilk(3), rwfilter(1), rwcut(1), rwgroup(1l), rwsort(1l), rwstats(1l), rwuniq(1l), pmapfilter(3),
silk(7), python(1), http://docs.python.org/

SiLK-3.24.0 73

http://docs.python.org/

silkpython PySiLK Reference Guide

74 SiLK-3.24.0

Appendix A

License

SiLK 3.24
Copyright 2025 Carnegie Mellon University.

Licensed under a GNU GPL 2.0-style license, please see LICENSE.txt or contact permission@sei.cmu.edu
for full terms.

June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software-to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there

75

License PySiLK Reference Guide

is no warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program pro-
prietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The ”Program”, below, refers to
any such program or work, and a ”work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term "modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

“a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

¢) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

76 SiLK-3.24.0

PySiLK Reference Guide License

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following;:

“a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

¢) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associ-
ated interface definition files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies

SiLK-3.24.0 7

License PySiLK Reference Guide

directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY

78 SiLK-3.24.0

PySiLK Reference Guide License

OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

“ One line to give the program’s name and a brief idea of what it does. Copyright (C) jyear; jname of
author;,

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

“ Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO
WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show ¢’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items—whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

“ Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes passes
at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

SiLK 3.24 includes and/or can make use of certain third party software (”Third Party Software”). The
Third Party Software that is used by SiLK 3.24 is dependent upon your system configuration, but typically
includes the software identified in this LICENSE.txt file, and/or described in the documentation and/or read
me file. By using SiLK 3.24, you agree to comply with any and all relevant Third Party Software terms and
conditions contained in any such Third Party Software or separate license file distributed with such Third
Party Software. The parties who own the Third Party Software (” Third Party Licensors”) are intended third
party beneficiaries to this License with respect to the terms applicable to their Third Party Software. Third
Party Software licenses only apply to the Third Party Software and not any other portion of SiLK 3.24 or

SiLK-3.24.0 79

License PySiLK Reference Guide

SiLK 3.24 as a whole.

This material is based upon work funded and supported by the Department of Homeland Security under Con-
tract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department
of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

References herein to any specific entity, product, process, or service by trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
Carnegie Mellon University or its Software Engineering Institute nor of Carnegie Mellon University - Software
Engineering Institute by any such named or represented entity.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

GOVERNMENT PURPOSE RIGHTS - Software and Software Documentation

Contract No.: FA8702-15-D-0002 Contractor Name: Carnegie Mellon University Contractor Address: 4500
Fifth Avenue, Pittsburgh, PA 15213

The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this software are
restricted by paragraph (b)(2) of the Rights in Noncommercial Computer Software and Noncommercial
Computer Software Documentation clause contained in the above identified contract. No restrictions apply
after the expiration date shown above. Any reproduction of the software or portions thereof marked with
this legend must also reproduce the markings.

CERT®) and Carnegie Mellon@®) are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM25-0915

80 SiLK-3.24.0

	 Introduction
	 PySiLK
	 silkpython
	A License

