
SiLK Installation Handbook

SiLK-3.23.0

CERT Software Automation Product Development
© 2003–2024 Carnegie Mellon University

License available in Appendix D

The canonical location for this handbook is
https://tools.netsa.cert.org/silk/silk-install-handbook.pdf

August 29, 2024

https://tools.netsa.cert.org/silk/silk-install-handbook.pdf

SiLK 3.23
Copyright 2024 Carnegie Mellon University.
NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MER-
CHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROMUSE OF THEMATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.
Licensed under a GNU GPL 2.0-style license, please see LICENSE.txt or contact permission@sei.cmu.edu
for full terms.
[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.
This Software includes and/or makes use of Third-Party Software each subject to its own license.
DM24-1064

2

Contents

1 Introduction 7

1.1 Prerequisites . 8

1.2 Upgrading SiLK . 9

1.3 SiLK system configurations . 9

1.3.1 Single machine configuration . 10

1.3.2 Remote data collection and remote flow storage . 11

1.3.3 Remote data collection with local storage . 13

1.3.4 Local collection and remote SiLK flow storage . 14

1.3.5 Analysis only . 14

1.4 Handbook summary . 15

1.5 Additional resources . 15

2 Building SiLK from Source Code 17

2.1 Unpack the source code . 17

2.2 Choose installation directories . 18

2.3 Optional features . 19

2.3.1 Supporting PySiLK: SiLK in Python . 19

2.3.2 Supporting IPv6 . 19

2.3.3 Choosing the IPset file format . 20

2.3.4 Using automatic file compression . 21

2.3.5 Specifying the location of compression libraries . 21

2.3.6 Building support for MaxMind GeoIP2 binary database files 21

2.3.7 Collecting IPFIX, NetFlow v9, or sFlow records . 22

2.3.8 Disabling run-time packing logic . 22

2.3.9 Controlling what applications are built and installed 23

2.3.10 Building static libraries . 23

2.3.11 Statically-linked applications . 23

2.3.12 Supporting encrypted communication using GnuTLS 23

2.3.13 Using your local timezone . 24

2.3.14 Supporting conversion of packet capture tcpdump data 24

2.3.15 Supporting asynchronous DNS . 24

2.3.16 Supporting the IP Association library (libipa) . 24

2.3.17 Supporting development and debugging . 25

2.4 Configure SiLK . 25

2.5 Build and install . 26

2.6 Create RPMs . 26

3

3 Analysis Tool Customization 29

3.1 Create the site configuration file, silk.conf . 29

3.2 Specify local address space . 31

3.3 Country Code mapping file installation . 33

4 Single Machine Configuration 35

4.1 Create the sensor configuration file, sensor.conf . 35

4.1.1 Probe Block . 36

4.1.2 Group Block . 38

4.1.3 Sensor Block . 38

4.1.4 Summary . 41

4.2 Install the software . 43

4.3 Customize the rwflowpack.conf configuration file . 43

4.4 Test the settings . 45

4.5 Enable automatic invocation . 45

4.6 Start the flow generator . 45

5 Remote Collection and Flow Storage 47

5.1 Packing machine, part 1 . 47

5.1.1 Install the software . 48

5.1.2 Customize and install rwflowpack . 48

5.1.3 Create an identifier for rwreceiver . 51

5.1.4 Create an identifier for rwsender . 51

5.1.5 Create keys and certificates for GnuTLS security . 52

5.2 Remote collection machine . 52

5.2.1 Install the software . 52

5.2.2 Customize and install flowcap . 53

5.2.3 Customize and install rwsender . 54

5.3 Packing machine, part 2 . 56

5.3.1 Customize the rwreceiver.conf configuration file . 56

5.3.2 Test the rwreceiver.conf settings . 57

5.3.3 Enable automatic invocation of rwreceiver . 57

5.4 Remote storage machine . 58

5.4.1 Install the software . 58

5.4.2 Customize and install rwflowappend . 58

5.4.3 Customize and install rwreceiver . 60

5.5 Packing machine, part 3 . 61

5.5.1 Customize the rwsender.conf configuration file . 61

5.5.2 Test the rwsender.conf settings . 63

5.5.3 Enable automatic invocation of rwsender . 63

5.6 Start the complete system . 63

5.6.1 Start transfer between collection and packing machines 63

5.6.2 Start transfer from packing to storage machines . 64

5.6.3 Start rwflowappend on each storage machine . 65

5.6.4 Start rwflowpack on the packing machine . 65

5.6.5 Start flowcap on each collection machine . 65

5.6.6 Start flow generator . 65

4

SiLK Installation Handbook

6 Remote Data Collection 67
6.1 Packing machine, part 1 . 67

6.1.1 Install the software . 67
6.1.2 Customize the rwflowpack.conf configuration file . 68
6.1.3 Create an identifier for rwreceiver . 70

6.2 Remote collection machine . 70
6.3 Packing machine, part 2 . 70
6.4 Start the complete system . 70

7 Remote SiLK Flow Storage 71
7.1 Packing machine, part 1 . 71

7.1.1 Install the software . 71
7.1.2 Customize the rwflowpack.conf configuration file . 72
7.1.3 Create an identifier for rwsender . 74

7.2 Remote storage machine . 74
7.3 Packing machine, part 2 . 74
7.4 Start the complete system . 74

8 Flow Generator Configuration 75
8.1 Using the YAF Flow Sensor . 75
8.2 Configuring a router . 76
8.3 Configure the machine(s) receiving flows . 77

A Packing Logic Overview 79
A.1 NetFlow primer . 79
A.2 IPFIX introduction . 80
A.3 Categorizing the flow . 80

A.3.1 Incoming vs. outgoing traffic . 80
A.3.2 Routed vs. non-routed traffic . 81
A.3.3 Routed-web traffic . 81
A.3.4 Routed-ICMP traffic . 82
A.3.5 Categorization summary . 82

A.4 Data Storage Hierarchy . 83

B Determining External Interfaces 85

C Creating GnuTLS Certificates 89
C.1 Creating the Certificate Authority . 89
C.2 Creating a program-specific certificate/key pair . 90
C.3 Creating a PKCS#12 file . 91

D License 93

SiLK-3.23.0 5

SiLK Installation Handbook

6 SiLK-3.23.0

1

Introduction

SiLK, the System for Internet-Level Knowledge, is a collection of traffic analysis tools developed by the CERT
Network Situational Awareness Team (CERT NetSA) to facilitate security analysis of large networks. The
SiLK tool suite supports the efficient collection, storage, and analysis of network flow data, enabling network
security analysts to rapidly query large historical traffic data sets. SiLK is ideally suited for analyzing traffic
on the backbone or border of a large, distributed enterprise or mid-sized ISP.

SiLK supports the collection of the following types of flow data:

NetFlow v5. Flows generated by a router producing NetFlow v5, or software that can generate data
with that format. The format of NetFlow v5 PDUs (Protocol Data Units) is described in “NetFlow
Export Datagram Format,” http://www.cisco.com/en/US/docs/net mgmt/netflow collection engine/
3.6/user/guide/format.html.

IPFIX. Internet Protocol Flow Information eXport flow records that were generated by an IPFIX-compliant
flow generator such as YAF. To use this functionality, you must install libfixbuf-1.7.0 or later prior to
building and installing SiLK. Both YAF and libfixbuf are available from https://tools.netsa.cert.org/.
For information on IPFIX, see http://www.ietf.org/dyn/wg/charter/ipfix-charter.html.

NetFlow v9. Flows generated by a router producing NetFlow v9. To use this functionality, you must install
libfixbuf-1.7.0 or later prior to building and installing SiLK.

sFlow v5. Flows generated by an sFlow producer. To use this functionality, you must install libfixbuf-1.7.0
or later prior to building and installing SiLK.

This handbook provides instructions to configure and install the SiLK Collection and Analysis Suite. It is
intended for individuals comfortable with the following tasks:

• UNIX file system basics, including the basics of modifying shell scripts

• Compilation of C code in a UNIX-like environment

Additionally, if SiLK will be accepting NetFlow data from a router, the installer should be comfortable with
router configuration.

7

http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.ietf.org/dyn/wg/charter/ipfix-charter.html

SiLK-3.23.0 SiLK Installation Handbook

1.1 Prerequisites

In order to build SiLK, you will need to have:

• a C compiler, such as gcc

• the make program

To get the full functionality of SiLK, these additional libraries and their header files are recommended:

• Python 2.4 or later (including Python 3.x) for PySiLK, a module which supports using Python from
within some SiLK tools and allows manipulating SiLK Flows from within Python (Python 2.6 or later
is highly recommended)

• libfixbuf-1.7.0 or later to support the collection of IPFIX data, NetFlow v9 data, and sFlow (https:
//tools.netsa.cert.org/fixbuf/)

• zlib general purpose compression library to support file compression and reading of compressed files

• LZO real-time compression library to support file compression (http://www.oberhumer.com/opensource/
lzo/)

• Snappy compression library to support file compression (http://google.github.io/snappy/)

• libpcap to support conversion of packet capture data to SiLK Flows

• GnuTLS library 2.12.0 or later (including GnuTLS 3.x) to support file transfer encryption between
remote data collectors and the rest of SiLK (http://www.gnutls.org/)

• libmaxminddb library 1.2.0 or later to allow rwgeoip2ccmap to create a country-code prefix map file
from a MaxMind GeoIP21 or GeoLite2 binary database file (e.g., GeoIP2-Country.mmdb). (SiLK is
able to read the GeoIP2 CSV files without requiring an additional library).

• libipa 0.5.0 or later to support importing and exporting IP lists between SiLK and an IPA (IP Asso-
ciation) database (https://tools.netsa.cert.org/ipa/)

Note that many Linux systems have one package for the run-time shared libraries and another for the
header files, and both must be installed when building SiLK from source. For example, to build SiLK
with zlib support on a Red Hat Enterprise Linux AS release 4 system, you will need to install both the
zlib-1.2.1.2-1.2 and the zlib-devel-1.2.1.2-1.2 RPMs (your version numbers may be different).

When building on a Linux system, the following packages are recommended:

• c-ares (or libc-ares)

• c-ares-devel (or libc-ares-devel)

• glib2 (required when using libfixbuf or libipa)

• glib2-devel

• gnutls (required for encrypted flow collection transport)

• gnutls-devel

1MaxMind, GeoIP, and related trademarks are the trademarks of MaxMind, Inc.

8 SiLK-3.23.0

https://tools.netsa.cert.org/fixbuf/
https://tools.netsa.cert.org/fixbuf/
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/
http://google.github.io/snappy/
http://www.gnutls.org/
https://tools.netsa.cert.org/ipa/

SiLK Installation Handbook SiLK-3.23.0

• libmaxminddb

• libmaxminddb-devel

• libssl-devel (required by Ubuntu’s python-devel package)

• lzo

• lzo-devel

• pcap

• pcap-devel

• python

• python-devel

• snappy

• snappy-devel

• zlib

• zlib-devel

1.2 Upgrading SiLK

New releases of SiLK are always capable of reading SiLK Flow data files created by previous releases of
SiLK, and support for nearly all other SiLK file formats is maintained in newer releases. When upgrading
to a new release of SiLK in an enterprise that uses separate collection, packing, and analysis machines, you
should upgrade the analysis host(s) first, then the packing host(s), and finally the collectors. You may also
choose to only upgrade the analysis hosts, and leave the packing and collection hosts at previous releases.

In addition, note that any change to the SiLK file formats will only occur when a change is made to the
major or minor version numbers of SiLK (the SiLK version number follows the patternmajor.minor.revision).
Practically, this means that you can upgrade a collection machine to a newer release, say SiLK-0.13.9, and yet
maintain the packing machines at an older release, SiLK-0.13.2. (These version numbers are for illustrative
purposes only.) However, a bump in the minor version number does not always signal a change to the SiLK
file formats. An analysis host at SiLK-0.13.2 may be able to read files created by SiLK-0.14.1 on the packing
host; it depends on whether the SiLK file formats changed at SiLK-0.14.0. Changes to the SiLK file formats
are always documented in the release notes, which are included in the source distribution and are available
on the web site (https://tools.netsa.cert.org/silk/).

1.3 SiLK system configurations

There are two categories of applications that comprise a SiLK installation:

Analysis tools read binary files containing SiLK Flow records and partition, sort, and count these records.
Additional analysis tools can take packet capture (pcap) data, such as that created by tcpdump, and
create SiLK Flow records from this data.

SiLK-3.23.0 9

SiLK-3.23.0 SiLK Installation Handbook

Packing tools run as daemons to collect flow records from a flow generator (e.g., a router producing
NetFlow), convert the records to the SiLK Flow format, categorize the flows as incoming or outgoing,
and write the records to their final destination in binary flat files for use by the analysis tools.

Installation of the analysis tools is relatively straightforward since they are installed on systems that have
direct access to the SiLK data files and require little configuration.

Installing the packing tools is more complex: the tools run as background processes (with every operating
system having a unique way to start these processes) that must cooperate with each other and with additional
software and/or network devices. The packing tools are designed to provide a great amount of flexibility in
their installation, and with this flexibility comes additional complexity. The tools that make up the SiLK
packing system are:

rwflowpack is the heart of the packing system. It reads flow data either directly from network devices
producing flow data (flow generators) or from a file generated by flowcap, converts the data to the
SiLK flow format, categorizes the flow records, and writes records either to hourly flat-files organized
in a time-based directory structure or to small files for transfer to a remote machine for processing by
rwflowappend. All installations of the packing system will run rwflowpack.

flowcap allows for remote data collection. It listens to flow generators and stores the data in small files
(called flowcap files) in a single directory. These files are then transferred to rwflowpack for catego-
rization and storage.

rwflowappend allows for remote data storage. It watches a directory for files containing small numbers of
SiLK Flow records (called incremental files) and appends those records to hourly files organized in a
time-based directory tree.

rwsender watches an incoming directory for files, moves the files to a processing directory, and transfers
the files to one or more rwreceiver processes. rwsender’s incoming directory is usually the output
directory of flowcap or rwflowpack.

rwreceiver accepts files transferred from one or more rwsender processes and stores them in a destination
directory. It is this destination directory that rwflowpack or rwflowappend monitor for new files.
Note that either rwsender or rwreceiver may act as the server process with the other acting as the
client.

There are several possible configurations of the SiLK system which are introduced in this chapter. The
detailed installation instructions are presented in subsequent chapters. In the subsections that follow, the
term “remote” is with respect to the machine where rwflowpack is running.

1.3.1 Single machine configuration

In the single machine (all-in-one) configuration, all processing occurs on a single machine: You configure the
rwflowpack program to collect flows, convert them to the SiLK Flow format, categorize them, and store
the SiLK Flow records to the local disk. The analysis tools are installed on this same machine and read the
files from local disk. Figure 1.1 shows how this configuration would look when flows are collected from a
NetFlow router, and Figure 1.2 shows this configuration when the YAF flow collector is used.

This is the simplest complete installation. To use it, follow the instructions in Section 2 to configure and
build the source code, Section 3 to customize the analysis tools, and Section 4 to configure rwflowpack.

10 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

Figure 1.1: Single machine operation with NetFlow sensor

Figure 1.2: Single machine operation with YAF sensor

1.3.2 Remote data collection and remote flow storage

It is not uncommon to have a situation in which the sensor(s) generating the flow records are not close to
the data storage location. You could configure the flow generators to send the data to the data storage
location; however, due to network reliability and bandwidth issues, it is desirable to collect flow data as
close to where it is produced as possible. (This is especially true if the flow generator uses an unreliable
transport protocol, such as UDP-based NetFlow generated by a router.) In these situations, the flowcap

daemon can be installed on a machine close to the sensor where it will collect, compress, and forward the
data to rwflowpack for packing.

Also, suppose the machine where rwflowpack is running is not the same machine on which you are storing the
SiLK Flow files, or perhaps you want the SiLK files to be available on multiple machines for use by groups of
analysts. In such cases, you configure rwflowpack to write the SiLK Flows into small files called incremental
files, and these incremental files are distributed over the network to machine(s) where the rwflowappend

daemon writes the SiLK Flow records to their final location. The analysis tools read the records from this
final location.

This configuration is the most complex and it is illustrated in Figure 1.3 collecting NetFlow. When the YAF
flow collector is used, the top third of the drawing would resemble Figure 1.4.

In this configuration, the rwsender and rwreceiver daemons transfer files between the machines. rwsender
monitors a directory and transfers the files it finds there to one or more rwreceivers on the downstream
side. rwreceiver accepts files from one or more rwsenders and places the files into a directory where the
next tool in the packing chain can process them.

rwsender and rwreceiver only transfer files; they do not consider the contents of the files. Instead of using

SiLK-3.23.0 11

SiLK-3.23.0 SiLK Installation Handbook

Figure 1.3: Remote collection and remote storage

Figure 1.4: Using YAF for remote collection

12 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

rwsender and rwreceiver, you could (with some stipulations) use other software, such as rsync or scp, to
transfer the files between the machines.

If this describes your installation, follow the instructions in Section 2 to install SiLK on each machine, in
Section 3 to customize the analysis tools on each machine where analysis occurs, and in Section 5 to configure
the daemons on all the machines where the packing tools run.

1.3.3 Remote data collection with local storage

Figure 1.5: Remote collection and local storage

This configuration is a subset of the previous one: flowcap is used to capture the flows near the point where
they are generated, and the rwsender and rwreceiver daemons transfer the flows to the machine where
rwflowpack packs them and the analysis tools process them. Figure 1.5 depicts this configuration with a
NetFlow router. When a YAF sensor is used, the top half of the figure would be replaced with Figure 1.4.

This installation will largely follow the same instructions as those described previously; however, the config-
uration of rwflowpack is slightly different as described in Section 6. That section will refer you to the parts
of Section 5 you must follow to configure flowcap. You will use Section 3 to configure the the analysis tools
on the machine where rwflowpack is installed.

SiLK-3.23.0 13

SiLK-3.23.0 SiLK Installation Handbook

1.3.4 Local collection and remote SiLK flow storage

Figure 1.6: Local collection and remote storage

This configuration, shown in Figure 1.6, is also a subset of that described in Section 1.3.2, except that
rwflowpack is used to collect the flows instead of flowcap.

For this configuration, you will install the source code on the packing machine and the analysis machine
(Section 2), customize the analysis tools on the machine where rwflowappend is to run (Section 3), and
configure rwflowpack and rwflowappend (Section 7).

1.3.5 Analysis only

Figure 1.7: Configuration where only analysis occurs

Finally, if you only plan to use the software to analyze existing SiLK Flow files and/or packet capture (pcap)
data such as that created by tcpdump, you would use this configuration (Figure 1.7). For this configuration,
you need to build the source code (Section 2) and customize the analysis tools (Section 3).

14 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

1.4 Handbook summary

The instructions in the next two sections of this handbook will allow you to use SiLK to analyze existing
SiLK files and analyze packet capture (pcap) data such as that created by tcpdump: Section 2 describes
how to configure and install the SiLK software from source, and Section 3 describes how to customize the
analysis tools to get the most use from the system.

The other sections of the handbook describe how to use SiLK to capture flow data, categorize the flows
as incoming or outgoing, convert the data to the SiLK format, and store the SiLK Flows in binary flat
files indexed by hour, sensor, and direction: The simplest configuration is the Single machine configuration
(Section 4), where one machine collects the flow records, packs them, and stores them locally for use by
the analysis tools. Having collection, categorization, and storage on separate machines is the most complex
configuration (Section 5), and other configurations are possible (Sections 6 and 7).

Section 8 describes how to configure the flow generator to send its data to the SiLK collector(s).

To assist you in the configuration process, Appendix A describes how SiLK categorizes flows as incoming or
outgoing (including a description of the data storage hierarchy), and Appendix B provides instructions on
how to collect NetFlow data from the router and use that data as part of the configuration.

1.5 Additional resources

This handbook describes the installation of SiLK. For a discussion of the analysis tools, see their individual
manual pages, the complete set of manual pages in The SiLK Reference Guide, and the tutorial information
in Using SiLK for Network Traffic Analysis: Analysts’ Handbook . These documents are available at https:
//tools.netsa.cert.org/silk/docs.html.

SiLK-3.23.0 15

https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html

SiLK-3.23.0 SiLK Installation Handbook

16 SiLK-3.23.0

2

Building SiLK from Source Code

In this section you will

• unpack the SiLK source code

• configure the software for your site by specifying switches to the configure shell script

• build and install the software

Quick Start Tip: To unpack the software, install the entire suite into /usr/local, and have
it use /data as the location of the data repository, issue the commands:

$ gzip -d -c silk-3.23.0.tar.gz | tar xf -

$ cd silk-3.23.0

$./configure \

--enable-data-rootdir=/data \

--prefix=/usr/local

$ make

make install

(You may need to become the root user to install the software.)
You may continue to Section 3.

2.1 Unpack the source code

Download and unpack the source code distribution:

$ gzip -d -c silk-3.23.0.tar.gz | tar xf -

For the remainder of these instructions, the full path to the top of the source tree (i.e., the silk-3.23.0

directory, which contains the configure file) will be referred to as $SUITEROOT; it may be set in your
(Bourne-compatible) shell by entering the command:

$ export SUITEROOT=/home/silk /silk-3.23.0

17

SiLK-3.23.0 SiLK Installation Handbook

2.2 Choose installation directories

You should decide where to install the tools and where your SiLK Flow data files will reside, and specify
this information to the configure script. Some of these locations are compiled into the code, and others
are used to initialize the start-up scripts and configuration files for rwflowpack and the other packing tool
daemons.

SILK DATA ROOTDIR. The root of the directory tree where the SiLK Flow files are permanently
stored. Use the --enable-data-rootdir=dir switch to give the value to configure. If you do not
specify a location, /data is the name of the directory.

This value will be compiled into the analysis tools, and it will be the default location that rwfilter
uses when looking for the hourly data files. This directory must be accessible by the final program in
the packing chain (typically rwflowpack) which writes the packed SiLK flow files and by the analysis
machine(s) which reads them. The path to the directory tree can be different on the analysis and
packing machines, as long as the actual physical location is the same.

When running the tools, the value of the SILK DATA ROOTDIR environment variable will override this
compiled-in value. In addition, rwfilter allows you to override this value with the --data-rootdir

switch.

For historical reasons, the default value for this location is /data. We use a separate disk for the SiLK
flow data since the space it requires can be large and depends on the size of the monitored network,
the amount of traffic the network sees, and the aging policy for historical data.

SILK PATH. The root of the directory tree where SiLK will be installed. Pass this value to configure

in the --prefix switch. If not specified, the default is /usr/local. If you decide to move the tools
after they have been installed, you may need to specify the LD LIBRARY PATH environment variable (or
something equivalent for your platform) so that the applications can find the shared libraries.

The following table shows the subdirectories of $SILK PATH where files are normally installed, but
you can change these by specifying switches to configure. Use configure’s --help switch to see the
full list of directory choices.

bin analysis tools, such as rwfilter
sbin system administrator tools, for example rwflowpack
share/man manual pages
lib/silk optional plug-in support, such as PySiLK support
share/silk support files, such as the country-code mapping file
share/silk/etc sample configuration files and scripts to assist the system administrator in running

the packing system daemons
etc configuration files used by the packing system daemons (see

SCRIPT CONFIG LOCATION below)
var directory root used by packing tools (see DAEMON STATE DIRECTORY below)
var/log log files generated by the packing system daemons
var/lib incomplete data files generated by the packing tools and files awaiting processing
lib libraries required to run the tools and used to build end-user plug-ins
include/silk header files used to build end-user plug-ins

Note: The applications work best when they have access to configuration files and plug-ins, and the

code that searches for these files depend on the directory tree as it will be upon installation. If you

do not plan to use the tools outside of your own tree, you may want to specify --prefix=‘pwd‘ (note

the back quotes) to the configure script. When you run make install, the tools will be installed

into the top of the source tree.

18 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

SCRIPT CONFIG LOCATION. The directory containing configuration files used by the daemons
that make up the SiLK packing system. Often this is the /etc directory for system daemons;
RedHat Linux uses /etc/sysconfig for this value. The value SiLK uses is determined by the
--sysconfdir switch to configure, and it defaults to $SILK PATH/etc if the --sysconfdir switch
was not given. This value will be written into the sample daemon control sh-scripts that get in-
stalled in $SILK PATH/share/silk/etc/init.d/daemon . If you need to change this value after you
run configure, you may simply change the value in the sh-scripts.

DAEMON STATE DIRECTORY. The directory used by the packing system daemons to store log files,
incomplete data files, files received from remote machines, and files awaiting transfer. This is usually
the /var directory, with subdirectories for the various types of files and applications that own them.
You may set this value by running configure with --localstatedir=dir ; the default value for this
directory is $SILK PATH/var. This value is used in the configuration files for the packing tools that get
installed in $SILK PATH/share/silk/etc/daemon.conf. You will need to edit these files when you set
up the packing system, and you do not have to use these initial values.

2.3 Optional features

To adapt the source code to your operating system and environment, the configure shell script will run
several tests to check for various features. By giving command line switches to configure, you can include
additional features or instruct configure to use libraries from particular locations. You can also control
where SiLK will be installed. You can display the full list of switches that configure accepts by running
configure --help. The remainder of this section describes many of these switches.

2.3.1 Supporting PySiLK: SiLK in Python

SiLK provides support for accessing SiLK flow records from within Python and for using Python code as
part of an rwfilter invocation. You may also use Python code to create arbitrary fields to use in rwcut,
rwgroup, rwsort, rwstats, and rwuniq. This support is called PySiLK and it requires Python 2.4 or later.
Python 2.6 or later is highly recommended, and PySiLK is known to work with Python 3.x. For information
on using PySiLK, see SiLK in Python, available from https://tools.netsa.cert.org/silk/docs.html. You may
also consult the manual pages for pysilk, silkpython, and the various applications.

To include PySiLK support, you must provide the --with-python switch to configure. To use a particular
Python interpreter, you may use --with-python=path .

By default, the PySiLK modules will be installed into Python’s standard location for third-party mod-
ules. (Writing to this location usually requires that you are a system administrator.) To install
the modules in the SiLK installation tree ($SILK PATH), specify --with-python-prefix when run-
ning configure. You may also use --with-python-prefix=path to specify a different install prefix, or
--with-python-site-dir=path to specify an explicit directory.

If the PySiLK module is installed outside of Python’s standard search locations, you will need to set or
modify the PYTHONPATH environment variable to allow Python to find the PySiLK module.

2.3.2 Supporting IPv6

There are two independent forms of IPv6 support in SiLK: Whether SiLK stores flow records containing
IPv6 addresses, and whether SiLK supports IPv6 addresses for network connections.

SiLK-3.23.0 19

https://tools.netsa.cert.org/silk/docs.html

SiLK-3.23.0 SiLK Installation Handbook

Many SiLK applications support collecting, storing, and querying flow records that contain IPv6 addresses.
Because of the overhead of storing IPv6 addresses, this capability is disabled by default. To enable this
behavior, specify the --enable-ipv6 switch on the configure command line. If you want SiLK to be able
to collect IPv6 flow records, you must include support for libfixbuf (see 2.3.7) which allows SiLK to collect
IPFIX and NetFlow v9 data.

The SiLK applications that listen or connect to network sockets will support the use of IPv6 addresses
when the operating system has IPv6 support (specifically, when the getaddrinfo() library call exists).
To explicitly disable IPv6 networking support, specify --disable-inet6-networking on the configure

command line.

2.3.3 Choosing the IPset file format

This section describes a feature to make the default output of IPsets more compact at the risk of reducing
compatibility with older releases of SiLK.

SiLK-3.0.0 added a new record version format that rwset, rwsettool, and the other IPset tools use when
writing IPset files to a file or to a stream. That record version is 31 and it supports both IPv4 and IPv6
IPsets.

(By default, SiLK-3.0.0 used record version 3 for IPv4 IPsets, but in SiLK-3.6.0 the default for IPv4 IPsets
was changed back to record version 2 since it is more compact. Record-version 2 is compatible with all
releases of SiLK but it only supports IPv4.)

Since the SiLK-3.0.0 release, two additional IPset file formats have been added:

• Record version 4 was added in SiLK-3.7.0. It supports both IPv4 and IPv6 IPsets. It is always more
compact than record version 3 and often more compact that record version 2.

• Record version 5 was added in SiLK-3.14.0, and it is only used when writing IPv6 IPsets. It is often
more compact than record version 4.

Since it is our policy to avoid introducing incompatible changes within a major release series (such as the
SiLK-3.x series), new releases of SiLK still default to using record version 3 when writing IPv6 IPsets. Users
may choose a different record version via the SILK IPSET RECORD VERSION environment variable and
a tool’s --record-version switch.

The configure switch --enable-ipset-compatibility may be used to change the default record version
written by the IPset tools. The argument to the switch is a SiLK release number, such as 3.4.5. The switch
accepts any release number, and the IPset record versions for IPv4 IPsets and IPv6 IPsets are selected by
determining into which of the following ranges the release number falls:
Min release Max release IPv4 IPset IPv6 IPset

3.14.0 999.999.999 4 5
3.7.0 3.13.999 4 4
0.0.0 3.6.999 2 3

This switch only changes the record version that rwset and the other IPset tools write by default.
Users are still able to tell the tools to write files using the other record versions by setting the
SILK IPSET RECORD VERSION environment variable or using the tool’s --record-version switch.

SiLK uses the behavior introduced in SiLK-3.6.0 when the --enable-ipset-compatibility switch is not
given to configure or when the switch is given but the argument is either illegal or missing.

1It is only a coincidence that the record version is the same as the major release number of SiLK.

20 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

2.3.4 Using automatic file compression

To reduce the size of the data files, the rwflowpack daemon and many analysis tools have the ability to use an
external library to automatically compress their binary output when writing and uncompress their input when
reading. (This compression occurs on the ‘data’ section of the file; the file’s header remains uncompressed.)
You can specify whether a particular tool uses this external compression via a switch on the tool’s command
line. The default setting for this behavior is determined by the --enable-output-compression=type switch
to configure. SiLK supports the following parameters to the switch:

none use no compression; this is the default
zlib use the widely available zlib general compression library
snappy use the Snappy data compression library
lzo1x use the lzo1x algorithm from the LZO real-time data compression library

Compression support requires the presence of external libraries as described in the next section.

If you specify --enable-output-compression with no type, the compression will default to the first available
method of lzo1x, snappy, zlib, or none.

2.3.5 Specifying the location of compression libraries

The configure script automatically attempts to find the compression libraries and each library’s header
files. If the libray and header are found, support for that compression method is compiled into SiLK. You
may use switches on the configure script to help it find the compression libraries.

Note: Several operating system vendors distribute the libraries and header files in separate packages.

To take zlib on RedHat as an example, the zlib package contains the zlib library, and the header file

(and manual page) is in the separate zlib-devel package. In order to build SiLK from source, you need

to have both packages installed.

zlib The --with-zlib=dir switch tells configure that the zlib general compression header and library
are located in dir/include/zlib.h and dir/lib/libz.so, respectively.

Snappy The --with-snappy=dir switch tells configure that the Snappy (http://google.github.io/
snappy/) data compression header and library are located in dir/include/snappy-c.h and
dir/lib/libsnappy.so, respectively. SiLK has been tested with Snappy 1.1.1 and Snappy 1.1.3.

LZO The --with-lzo=dir switch specifies the location of the LZO (http://www.oberhumer.com/
opensource/lzo/) real-time data compression library. The configure script checks for several
variations of the name of the header and library files: For the header, configure checks
dir/include/lzo2/lzo1x.h, dir/include/lzo/lzo1x.h, and dir/include/lzo1x.h; for the li-
brary, configure checks dir/lib/lzo2.so and dir/lib/lzo.so. SiLK has been tested with LZO 1.08
and with LZO 2.02 through LZO 2.09.

2.3.6 Building support for MaxMind GeoIP2 binary database files

When SiLK is compiled with libmaxminddb support, the rwgeoip2ccmap tool is able to build the country-
code prefix map file (cf. Section 3.3) by reading a MaxMind GeoIP2 or GeoLite2 binary database file (e.g.,
GeoIP2-Country.mmdb).

SiLK (as of SiLK-3.17.0) is capable of reading the GeoIP2 and GeoLite2 comma-separated value (CSV) files
without using an external library. If GeoIP2 binary support is not needed, the libmaxminddb library is not
needed.

SiLK-3.23.0 21

http://google.github.io/snappy/
http://google.github.io/snappy/
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/

SiLK-3.23.0 SiLK Installation Handbook

The configure script will look for the pkg-config(1) specification file for libmaxminddb v1.2.0 or later
(libmaxminddb.pc) in the standard pkg-config directories, and if libmaxminddb is installed in a stan-
dard location, configure should be able to locate it. If you have installed libmaxminddb but configure
does not find it, you may run configure with the --with-libmaxminddb=dir switch to add the directory
dir to pkg-config’s search path (configure will add dir to the PKG CONFIG PATH environment variable).
The libmaxminddb.pc file is normally installed in the lib/pkgconfig subdirectory of the location where
libmaxminddb was installed.

2.3.7 Collecting IPFIX, NetFlow v9, or sFlow records

When SiLK is compiled with libfixbuf support, the SiLK packer can read NetFlow v9 flow records, sFlow
records (as of SiLK-3.9.0), and flow data generated by an IPFIX (Internet Protocol Flow Information eXport)
compliant flow generator such as the YAF flow sensor technology (https://tools.netsa.cert.org/yaf/).

libfixbuf is a separate library; it does not come as part of SiLK. You must download it from https://tools.
netsa.cert.org/fixbuf/ and install it prior to installing SiLK. For IPFIX, NetFlow v9, and sFlow support,
SiLK requires libfixbuf-1.7.0 or later (starting with the SiLK-3.15.0 release). (To use libfixbuf-3.0 or later,
SiLK-3.19.2 or later is required.)

If configure finds libfixbuf, the rwipfix2silk and rwsilk2ipfix command line tools will also be built.
These tools support converting between the SiLK Flow record format and IPFIX .

The configure script will look for the pkg-config(1) specification file for libfixbuf (libfixbuf.pc) in the
standard pkg-config directories, and if libfixbuf is installed in a standard location, configure should be
able to locate it. If you have installed libfixbuf but configure does not find it, you can run configure with
the --with-libfixbuf=dir switch to add the directory dir to pkg-config’s search path (configure will
add dir to the PKG CONFIG PATH environment variable). The libfixbuf.pc file is normally installed in the
lib/pkgconfig subdirectory of the location where libfixbuf was installed.

2.3.8 Disabling run-time packing logic

The packing logic used by rwflowpack to categorize flow records as incoming or outgoing, web or non-web,
et cetera, is determined by a plug-in that is loaded when rwflowpack is invoked. The name of this plug-in
must be passed to rwflowpack via the --packing-logic switch.

Using a plug-in for flow categorization makes it easier to change the packing logic or to test new categorization
schemes. However, it requires that the plug-in be available and that you not have disabled plug-in support
by building statically-linked applications (Section 2.3.11).

If you wish to compile the packing-logic into rwflowpack, you must specify the --enable-packing-logic

switch when you run configure. The argument to this switch is the C source file containing the packing
logic to use for this SiLK installation. If the argument is not a complete path, configure attempts to
find the source file relative to the current directory and then (when building outside the source directory)
relative to the top of the source tree. For example, if you wish to use the twoway packing logic described
in Appendix A, run

$ configure ... \

--enable-packing-logic=site/twoway/packlogic-twoway.c

22 SiLK-3.23.0

https://tools.netsa.cert.org/yaf/
https://tools.netsa.cert.org/fixbuf/
https://tools.netsa.cert.org/fixbuf/

SiLK Installation Handbook SiLK-3.23.0

2.3.9 Controlling what applications are built and installed

All of the SiLK applications (i.e., both the analysis tools and the packing [flow collection and storage]
daemons) and their associated manual pages will be built and installed unless the --disable-packing-tools
or --disable-analysis-tools switches are passed to configure. You can speed the building of the software
if you disable the parts of the system you do not require. For example, a remote collection machine does not
need the analysis tools (though they can be useful to have for debugging).

2.3.10 Building static libraries

As of SiLK-3.10.0, static libraries (e.g., libsilk.a) are no longer built by default. To build static libraries,
include the --enable-static switch on the configure command line.

2.3.11 Statically-linked applications

The configure script will build SiLK with support for dynamic-linking, where the common library functions
of SiLK are maintained in separate files that the operating system automatically loads when you invoke an
application. (The alternative is called static-linking.) While dynamic-linking allows the kernel to maintain
one image of the library for simultaneous invocations of SiLK tools, it makes moving the binaries almost
impossible since the libraries must move as well, and often the binaries are configured to look in a particular
location for the libraries.

If you wish to build without dynamic-linking support, give configure the --enable-static and
--enable-static-applications switches, which builds the static libraries and forces the applications to
be statically linked. However, this may result in some plug-ins not working correctly.

An alternative is to specify the --disable-shared switch to configure, but note that this results in the
plug-ins not being compiled at all.

If you specify --enable-static-applications or --disable-shared to configure, you also need to specify
the --enable-packing-logic switch since rwflowpack will not be able to load the packing logic as a plug-
in. See Section 2.3.8 for a description of the --enable-packing-logic switch and the argument the switch
requires.

2.3.12 Supporting encrypted communication using GnuTLS

If SiLK is compiled with GnuTLS support, the communication between rwsender and rwreceiver can be
encrypted and authenticated once the appropriate certificates have been created and distributed. GnuTLS is
the GNU Project’s Transport Layer Security Library, and it is available from http://www.gnutls.org/. Note
that SiLK requires GnuTLS v2.12.0 or greater.

The configure script will look for the pkg-config(1) specification file for GnuTLS (gnutls.pc) in the
standard pkg-config directories, and if GnuTLS is installed in a standard location, configure should be
able to locate it. If you have installed GnuTLS but configure does not find it, you can run configure

with the --with-gnutls=dir switch to add the directory dir to pkg-config’s search path (configure will
add dir to the PKG CONFIG PATH environment variable). The gnutls.pc file is normally installed in the
lib/pkgconfig subdirectory of the location where GnuTLS was installed.

SiLK-3.23.0 23

http://www.gnutls.org/

SiLK-3.23.0 SiLK Installation Handbook

2.3.13 Using your local timezone

By default, SiLK uses UTC when printing timestamps to the user, and it expects timestamps from the user
to be in UTC. Giving configure the --enable-localtime switch will modify SiLK to print and expect
times in the local timezone. (Data files are always indexed by UTC.)

2.3.14 Supporting conversion of packet capture tcpdump data

The configure script will attempt to locate the pcap library and header files. If they are not found or if
they do not have the required functions, SiLK will be built without support for the packet-flow conversion
tools rwptoflow and rwpmatch.

If you wish to specify that SiLK use a particular version of the pcap library, pass the --with-pcap=dir

switch to configure, where dir contains include/pcap.h and lib/libpcap.a (or a shared version of the
library).

2.3.15 Supporting asynchronous DNS

The rwresolve tool reads textual input and converts IP addresses to host names. The IP to host name
mapping uses DNS, and these requests can be slow. There are two libraries that enable asynchronous DNS
requests which rwresolve can take advantage of when support for the libraries is compiled into rwresolve.
The configure script will attempt to locate both of these libraries (and their header files). If one or both
libraries are found, rwresolve will be built with support for the library. Use the --resolver switch on
rwresolve to choose which resolver to use.

ADNS http://www.chiark.greenend.org.uk/∼ian/adns/. Currently the ADNS library does not support for
IPv6 addresses. If you wish to use a particular version of the ADNS library, pass the --with-adns=dir
switch to configure, where dir contains include/adns.h and lib/libadns.a (or a shared version of
the library).

c-ares http://c-ares.haxx.se/. The c-ares library does support IPv6. To use a particular version of the c-
ares library, pass the --with-c-ares=dir switch to configure, where dir contains include/ares.h
and lib/libcares.a (or a shared version of the library).

2.3.16 Supporting the IP Association library (libipa)

If SiLK is compiled with libipa support, the rwipaimport and rwipaexport programs will be compiled.
These tools interact with an IPA (IP Association) database, which stores information about IP addresses.
rwipaimport takes an existing SiLK IPset, Bag, or Prefix Map and stores it in the database; rwipaexport
reads data from the IPA database to create a SiLK IPset, Bag, or Prefix Map. libipa is a separate library
available from https://tools.netsa.cert.org/ipa/. SiLK requires libipa-0.5.0 or greater.

The configure script will look for the pkg-config(1) specification file for libipa (libipa.pc) in the stan-
dard pkg-config directories, and if libipa is installed in a standard location, configure should be able
to locate it. If you have installed libipa but configure does not find it, you can run configure with
the --with-libipa=dir switch to add the directory dir to pkg-config’s search path (configure will
add dir to the PKG CONFIG PATH environment variable). The libipa.pc file is normally installed in the
lib/pkgconfig subdirectory of the location where libipa was installed.

24 SiLK-3.23.0

http://www.chiark.greenend.org.uk/~ian/adns/
http://c-ares.haxx.se/
https://tools.netsa.cert.org/ipa/

SiLK Installation Handbook SiLK -3.23.0

2.3.17 Supporting development and debugging

By default, SiLK is built with full optimization (assuming the compiler accepts -O3 for optimization), with
no debugging, and with assert()s disabled. Pass the --disable-optimization, --enable-debugging, and
--enable-assert switches to configure to modify these settings. If your compiler uses a different switch to
enable optimization (such as -x04 for Solaris’ cc), you may specify it with --enable-optimization=-x04.

2.4 Configure SiLK

You will need to configure the source code for each machine that runs any part of the SiLK Collection and
Analysis Suite.

Run the configure script to configure the SiLK source code. The following command would configure the
software to use /data as the location of the data repository and to expect to be installed into the /usr/local
directory:

$ cd $SUITEROOT
$./configure \

--prefix=/usr/local \

--enable-data-rootdir=/data

Consult the previous section for additional switches that you may need or wish to pass to configure to help
it find a library or to enable an optional feature.

configure will run several tests on your platform and use the results of these tests to create several files.
When configure has finished, it will print a summary of how it has configured the SiLK source code:

* Configured package: SiLK 3.23.0

* Host type: x86_64-unknown-linux-gnu

* Source files ($top_srcdir): .

* Install directory: /usr/local

* Root of packed data tree: /data

* Packing logic: via run-time plugin

* Timezone support: UTC

* Default compression method: SK_COMPMETHOD_NONE

* IPv6 network connections: YES

* IPv6 flow record support: YES

* IPset file compatibility: SiLK 3.7.0 (record-version=4)

* IPFIX collection support: YES (-pthread -L/lib64 -lfixbuf

-lgthread-2.0 -lglib-2.0)

* NetFlow9 collection support: YES

* sFlow collection support: YES

* Fixbuf compatibility: libfixbuf-1.7.1 >= 1.7.0

* Transport encryption support: YES (-lgnutls)

* IPA support: NO

* MaxMindDB support: YES (-lmaxminddb)

* ZLIB support: YES (-lz)

* LZO support: YES (-L/usr/lib64 -llzo2)

* SNAPPY support: YES (-lsnappy)

* LIBPCAP support: YES (-lpcap)

* C-ARES support: YES (-lcares)

SiLK -3.23.0 25

SiLK-3.23.0 SiLK Installation Handbook

* ADNS support: NO

* Python interpreter: /usr/bin/python

* Python support: YES (-Xlinker -export-dynamic -ldl

-lutil -lm -L/usr/lib64 -lpython2.7 -pthread)

* Python package destination: /usr/lib64/python2.7/site-packages

* Build analysis tools: YES

* Build packing tools: YES

* Compiler (CC): gcc

* Compiler flags (CFLAGS): -I$(srcdir) -I$(top_builddir)/src/include
-I$(top_srcdir)/src/include -DNDEBUG -O3 -fno-strict-aliasing

-Wall -W -Wmissing-prototypes -Wformat=2 -Wdeclaration-after-statement

-Wpointer-arith

* Linker flags (LDFLAGS):

* Libraries (LIBS): -lsnappy -llzo2 -lz -ldl -lm

The above message is also written to the silk-summary.txt file in the directory where you ran configure.

Verify that the configuration matches your expectations.

2.5 Build and install

To build SiLK, simply type make from the top of the source tree:

$ cd $SUITEROOT
$ make

You can then install the software. Depending on where you chose to install, you may need to become the
root user first. This command will install the applications, the support libraries, the plug-ins, and the
manual pages:

cd $SUITEROOT
make install

2.6 Create RPMs

As this chapter demonstrates, there are many configuration choices an administrator can make when creating
a SiLK installation. Because of this, it is difficult for the SiLK authors to provide a single RPM that will
work for every installation.

SiLK works around this by providing an RPM spec file template in the distribution (silk.spec.in). When
you run the configure script, one of its output files is silk-3.23.0.spec, which is an RPM spec file that
matches the configuration options you passed to configure.

To create the RPMs, you will largely follow the instructions provided in Sections 2.1 through 2.4 of this
chapter. In Section 2.2, the only installation directory you need to choose is the SILK DATA ROOTDIR;
that is, the root of the directory tree where the SiLK Flow files will be stored.

Once you have configured SiLK, you can use the RPM spec file (silk-3.23.0.spec), the SiLK distribution
file (silk-3.23.0.tar.gz), and the rpmbuild utility to create RPMs that you can install.

The RPM spec file generates the following RPMs:

26 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

silk-common contains the libraries and configuration files required by the other parts of SiLK Toolset, as
well as generally useful utilities. This package is a prerequisite for all other SiLK packages.

silk-analysis contains the analysis tools that query the SiLK Flow data collected by rwflowpack and
summarize that data in various ways.

silk-rwflowpack converts NetFlow v5, NetFlow v9, or IPFIX (Internet Protocol Flow Information eXport)
data to the SiLK Flow record format, categorizes each flow (e.g., as incoming or outgoing), and stores
the data in binary flat files within a directory tree, with one file per hour-category-sensor tuple. Use
the tools from the silk-analysis package to query this data. rwflowpack may capture the data itself,
or it may process files that have been created by flowcap.

silk-flowcap contains flowcap, a daemon to capture NetFlow v5, NetFlow v9, or IPFIX flows, to store
the data temporarily in files on its local disk, and to forward these files over the network to a machine
where rwflowpack processes the data. flowcap is typically used with an rwsender–rwreceiver pair
to move the files across the network.

silk-rwflowappend is used when the final storage location of SiLK data files is on a different machine than
that where the files are created by the rwflowpack daemon. rwflowappend watches a directory for
SiLK data files and appends those files to the final storage location where the SiLK analysis tools from
the silk-analysis package can process them. To move the files from rwflowpack to rwflowappend,
an rwsender–rwreceiver pair is typically used.

silk-rwreceiver contains a program (rwreceiver) which receives files over the network from one or
more rwsender programs. rwsender–rwreceiver pairs are used to move files from a machine run-
ning flowcap to one running rwflowpack, or from the rwflowpack machine to machine(s) running
rwflowappend.

silk-rwsender contains a program (rwsender) which transmits files over the network to one or more
rwreceiver programs.

silk-rwpollexec contains a program (rwpollexec) which monitors a directory for incoming files. For each
file, rwpollexec executes a user-specified command. If the command completes successfully, the file is
either moved to an archive directory or deleted.

silk-devel contains the development libraries and headers for SiLK. This package is required to build
additional applications or to build shared libraries for use as plug-ins to the SiLK analysis tools.

SiLK-3.23.0 27

SiLK-3.23.0 SiLK Installation Handbook

28 SiLK-3.23.0

3

Analysis Tool Customization

This section describes the customization of the analysis tools. The manual page for each tool will be installed
under $SILK PATH/share/man/man1/ when you install SiLK. (In addition, https://tools.netsa.cert.org/silk/
docs.html provides the manual pages as individual web pages and as a single volume in The SiLK Reference
Guide. The web site also contains a tutorial on using the analysis suite: Using SiLK for Network Traffic
Analysis: Analysts’ Handbook .)

While nothing in this section is required to use SiLK, these steps will enhance the utility of the software.

3.1 Create the site configuration file, silk.conf

In addition to the information contained in the NetFlow or IPFIX flow record (e.g., source and destination
addresses and ports, IP protocol, time stamps, data volume), every SiLK flow record has two additional
pieces of information:

• The sensor typically denotes the location where the flow data was collected; e.g., an organization that
is instrumenting its border routers would create a sensor to represent each router.

• The flowtype represents information about how the flow was routed (e.g., as incoming or outgoing) or
other information about the flow (e.g., web or non-web). The packing process categorizes the flows
into flowtypes. The class and type attributes on the SiLK flow records map to a flowtype.

The purpose of the SiLK site configuration file, silk.conf, is to define the sensors, classes, and types to use
when packing and accessing the SiLK flow data. The first time you install SiLK, and any time you add new
sensors (IPFIX or NetFlow generators) to a deployment, you will need to update silk.conf.

29

https://tools.netsa.cert.org/silk/docs.html
https://tools.netsa.cert.org/silk/docs.html

SiLK-3.23.0 SiLK Installation Handbook

Quick Start Tip: Open $SILK PATH/share/silk/twoway -silk.conf in a text editor and
change the sensor names S0, S1, et cetera to reflect the sensors at your site. Add or remove
sensors as required, and be certain to change the name in both the sensor and the class

sections of the file.
sensor 0 Alpha

sensor 1 Bravo

...

class all

sensors Alpha Bravo ...

end class

Once you have made the changes, rename the file silk.conf and save it in the root of your
data repository, normally /data.
You may continue to Section 3.2.

When you install SiLK, sample site configuration files are installed in
$SILK PATH/share/silk/SITE -silk.conf. The various files provide different sets of classes and
types, and the site file must coordinate with the packing rules that you will use at your site. For information
on the twoway and generic site files, see Appendix A. We recommend use of the twoway-silk.conf file.

Copy twoway-silk.conf to a temporary location, renaming the file as silk.conf when you copy it, and
open silk.conf in a text editor. If you are using the twoway-silk.conf file, you will see the following near
the beginning of the file:

1 sensor 0 S0

2 sensor 1 S1

3 sensor 2 S2

4 sensor 3 S3

5 ...

6 sensor 13 S13

7 sensor 14 S14

8

9 class all

10 sensors S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14

11 end class

Each line of form

sensor NUM NAME

defines a sensor, where

NUM is an increasing integer number representing the integer ID of the sensor. It is good practice to number
the first entry 0, the second 1, etc.

NAME is the name of the sensor. For example, the name of the sensor on line 2 is S1. Each NAME can be
up to 64 characters in length, and it may not contain an underscore, a slash, or white space.

As distributed, the twoway-silk.conf is configured with 15 sensors having names S0, S1, through S14. (If
you have 15 or fewer sensors and these names are satisfactory, you may save the silk.conf file to the root
of your data repository, typically /data, and skip ahead to Section 3.2.)

30 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

You may add, remove, or rename the sensors. Often the sensor names reflect the location of a router or the
ISP the router connects to. There are some important things to keep in mind when modifying the list of
sensors:

1. Once a sensor has been assigned an ID number and data has been collected for that sensor, future
revisions should never remove or renumber the sensor. SiLK Flow files store the sensor’s integer ID
and use it to look up the sensor’s name; removing or renumbering a sensor breaks this mapping. In
order to keep the mapping consistent between new and old data, old sensor definitions should remain
indefinitely.

2. If an existing sensor is ever renamed, it will be necessary to rename all the previously packed data files
that have the former sensor name as part of their file names.

Once you have edited the sensor definitions, you must update the sensors command in the same file (line 10)
to contain the list of sensor names.

For example, if you had three routers Alpha, Bravo, and Charlie you would edit the site configuration file to
read:

sensor 0 Alpha

sensor 1 Bravo

sensor 2 Charlie

class all

sensors Alpha Bravo Charlie

end class

You should not need to change the class and type statements in the file, and doing so may break the
packing rules in use at your site.

Once you have modified the silk.conf file, you should copy it to the root of your data repository, typically
/data (cf. Section 2.2).

A single installation of SiLK may be used to query multiple data storage locations (though each invocation
of a command can only query one storage location). Install a silk.conf into the root of each data storage
tree, and set the SILK DATA ROOTDIR environment variable to the root of the tree you wish to query.

3.2 Specify local address space

The address type utility in SiLK provides a quick way to categorize an IPv4 address as internal to your
network, external, or non-routable. The --stype and --dtype switches to rwfilter allow one to partition
by this category, and the stype and dtype fields in rwcut, rwgroup, rwsort, rwstats, and rwuniq will
display, group, sort, or count by this category. To use this functionality, you must create and install a
mapping file the describes your IP space. If you do not wish to use this functionality (or if you wish to
install it at a later time), you may skip to Section 3.3.

SiLK-3.23.0 31

SiLK-3.23.0 SiLK Installation Handbook

Quick Start Tip: Copy $SILK ROOT/share/silk/addrtype-templ.txt to a file named
addresses.txt and open that file in a text editor. Add the CIDR blocks describing your
IP space to the end of the file, with one CIDR block per line, and label each line internal;
for example:

My IP space (CMU)

128.2.0.0/16 internal

Save the text file, convert it into a binary prefix map, and copy it into the installation tree:

$ rwpmapbuild --input addresses.txt --output address_types.pmap

cp address_types.pmap $SILK_PATH/share/silk/address_types.pmap

You may continue to Section 3.3.

The mapping file is named address types.pmap, and you must build this file by creating a text
file and processing it with the rwpmapbuild tool. A template for the text file is provided in
$SILK ROOT/share/silk/addrtype-templ.txt. The beginning of the file contains some setup information
for rwpmapbuild:

1 # Numerical mappings of labels

2 label 0 non-routable

3 label 1 internal

4 label 2 external

5

6 # Default to "external" for all un-defined ranges.

7 default external

8

9 # Force IP-based mode

10 mode ip

Note: Do not change the numerical values for the mappings (lines 2–4); the address type utility requires

those particular values.

As distributed, the addrtype-templ.txt file contains CIDR blocks that should not be seen (are non-
routable) on the public Internet. Each CIDR block is labeled as non-routable and is preceded with an
explanatory comment:

0.0.0.0/8 non-routable

10.0.0.0/8 non-routable

127.0.0.0/8 non-routable

...

You may wish to make adjustments to this list depending on what you plan to instrument and where your
sensors are located.

Copy the addrtype-templ.txt file to a new file, for example addresses.txt. Open addresses.txt in a
text editor, add lines to the file describing your IP space (one CIDR block per line), and label each line
internal; for example:

My IP space (CMU)

128.2.0.0/16 internal

32 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

Any CIDR block that is not listed in the file will treated as an external address (due to the default rule on
line 7).

Once you’ve created and saved the text file, convert it into a binary prefix map and copy it into the installation
tree:

$ rwpmapbuild --input addresses.txt --output address_types.pmap

cp address_types.pmap $SILK_PATH/share/silk/address_types.pmap

For additional information, see the addrtype(3) and rwpmapbuild(1) manual pages.

3.3 Country Code mapping file installation

Some SiLK tools can use a data file to map IP addresses to the country where that IP is located. With the
data file, named country codes.pmap, in place, an analyst can use the scc and dcc switches (on rwfilter)
and fields (on rwcut, rwgroup, rwsort, rwstats, and rwuniq) to partition, display, group, sort, and count
by country. This section describes how to build and install the data file. If you do not wish to use this
functionality (or if you wish to install it later), you may skip this section.

Quick Start Tip: Download the GeoIP2 or GeoLite2 comma-separated values (CSV)
version of the country database from MaxMind, https://dev.maxmind.com/geoip/. Run
rwgeoip2ccmap to convert the data to SiLK’s format, setting --input-path to the GeoLite2-
Country-CSV DATE directory. Copy the generated file into the installation tree:

$ unzip GeoLite2-Country-CSV_20180327.zip

$ rwgeoip2ccmap --input-path=GeoLite2-Country-CSV_20180327 \

--output-path=country_codes.pmap

cp country_codes.pmap $SILK_PATH/share/silk/country_codes.pmap

SiLK supports creating the country codes.pmap data from the following versions of the MaxMind GeoIP
country data:

• The GeoIP2 or GeoLite2 comma-separated value (CSV) files

• The GeoIP2 or GeoLite2 binary database file when SiLK is built the libmaxminddb support (Sec-
tion 2.3.6)

• The GeoIP Legacy or GeoLite Legacy CSV file

• The GeoIP Legacy or GeoLite Legacy binary file

For additional information, see the rwgeoip2ccmap(1) and ccfilter(3) manual pages.

SiLK-3.23.0 33

https://dev.maxmind.com/geoip/

SiLK-3.23.0 SiLK Installation Handbook

34 SiLK-3.23.0

4

Single Machine Configuration

This section describes how to configure your site to use a single machine to collect, pack, and analyze flow
data as shown in Figures 1.1 and 1.2.

For this configuration, rwflowpack is used to collect, categorize, convert, and store the flow records on a
single machine, and the analysis tools are installed on this same machine.

If this does not describe your packing configuration, refer to the list of possible configurations in Section 1.3.

4.1 Create the sensor configuration file, sensor.conf

This section provides instructions on creating the Sensor Configuration file used when collecting and cate-
gorizing the flow data. The Sensor Configuration file serves two purposes:

• It instructs rwflowpack or flowcap on how to collect the data; for example, on which ports to listen
for flow data.

• It gives rwflowpack the information it needs to categorize the flow data.

You will find full documentation for the Sensor Configuration Language in the sensor.conf(5) manual
page. This section serves as a starter guide.

This handbook will use sensor.conf as the name of the Sensor Configuration file, but it may have any
reasonable name.

To meet the two purposes of the Sensor Configuration file, three types of objects are defined:

1. The probe block specifies collection information. The probe could be listening on the network for IPFIX
or NetFlow records that are generated by a router or by software that processes packet capture (pcap)
data. In rwflowpack, the probe may also specify directories that rwflowpack should periodically poll
for files containing NetFlow v5 records, IPFIX records, or SiLK Flow records.

2. The sensor block specifies information used to categorize flow records. Each sensor block lists the
names and types of probes that are used as a source for the sensor. The packed SiLK flow records will
be labeled with the sensor’s numerical identifier.

3. The group block allows one to assign a name to a list of either CIDR blocks or non-negative integers to
treat as SNMP interface values. A group may reference previously created groups. The use of groups
is optional; their primary purpose is as a convenience to the administrator.

35

SiLK -3.23.0 SiLK Installation Handbook

The SiLK collection tools support the following types of probes:

ipfix An ipfix probe may process Internet Protocol Flow Information eXport records that are read over the
network from an IPFIX flow generator such as YAF (https://tools.netsa.cert.org/yaf/). Alternatively,
an ipfix probe may poll a directory for files created by YAF. To support an ipfix probe, SiLK must
be built with libfixbuf support (Section 2.3.7).

netflow-v5 A netflow-v5 probe collects unidirectional NetFlow v5 Protocol Data Units (PDU) from a
router or from software that generates NetFlow records from packet capture files. A netflow-v5

probe may also process files created by Cisco NetFlow Collector. These files contain one or more 1464
byte-blocks, where each block contains the 24-byte NetFlow v5 header and space for thirty 48-byte
flow records (the header will say how many of the 30 records contain valid flow data). The format of
a NetFlow v5 PDU is described in “NetFlow Export Datagram Format,” http://www.cisco.com/en/
US/docs/net mgmt/netflow collection engine/3.6/user/guide/format.html.

netflow The netflow type is an alias for netflow-v5. This alias may be removed in a future release of
SiLK.

netflow-v9 A netflow-v9 probe collects NetFlow v9 records over the network. (Files of NetFlow v9 records
are not supported.) To support a netflow-v9 probe, SiLK must be built with support for libfixbuf-1.7.0
or later (Section 2.3.7).

sflow An sflow probe collects sFlow v5 records over the network. (Files of sFlow records are not supported.)
To support an sflow probe, SiLK-3.9.0 or later is required and SiLK must be built with support for
libfixbuf-1.7.0 or later (Section 2.3.7).

silk A silk probe processes the records contained in SiLK Flow files that were created by previous invoca-
tions of rwflowpack or of the SiLK analysis tools. The flows will be completely re-packed, as if they
were just received over the network, and any categorization information in the records will be ignored.
Since SiLK typically removes the SNMP interfaces from its flow records, it is unlikely that you will be
able to use the SNMP interfaces to categorize the flows.

The syntax of the Sensor Configuration file allows simple key-value pairs on each line, where the key and
value are separated by white space. Multiple values are separated by white space and/or comma. Blank
lines and comments—which begin with ‘#’ and continue to the end of the line—are ignored.

4.1.1 Probe Block

The probe block assigns a name to the probe and specifies the type of probe. Each probe must have a unique
name; since there is often a one-to-one mapping between probes and sensors, each probe usually has the
same name as its sensor. Some sample probe blocks follow.

The following block defines the “Alpha” probe and it instructs rwflowpack or flowcap to listen on UDP
port 18001 for NetFlow v5 PDUs:

probe Alpha netflow-v5

listen-on-port 18001

protocol udp

end probe

The “Bravo-ipfix” probe tells rwflowpack or flowcap to listen on 18002/tcp for IPFIX flows:

36 SiLK -3.23.0

https://tools.netsa.cert.org/yaf/
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html

SiLK Installation Handbook SiLK -3.23.0

probe Bravo-ipfix ipfix

listen-on-port 18002

protocol tcp

end probe

In the next block, rwflowpack or flowcap will listen on UDP port 18003 for NetFlow v5 data. Connections
from hosts other than 10.1.1.101 will be ignored.

probe Charlie netflow-v5

listen-on-port 18003

protocol udp

accept-from-host 10.1.1.101

end probe

The “Delta-in” and “Delta-out” probes shown next can be used when the monitoring point sees unidirectional
traffic. For example, when all incoming traffic enters the monitor on one network interface card (NIC) and
all outgoing traffic enters the monitor on a different NIC. A separate collection process is used for each NIC,
each sending to a different port (9902/tcp and 9907/tcp). The rwflowpack or flowcap program will bind
to a particular host address (192.168.200.1).

probe Delta-in ipfix

listen-on-port 9902

listen-as-host 192.168.200.1

protocol tcp

end probe

probe Delta-out ipfix

listen-on-port 9907

listen-as-host 192.168.200.1

protocol tcp

end probe

The “Echo” and “Foxtrot” probes can be used by rwflowpack. These probes instruct rwflowpack to
periodically poll the named directories for files containing NetFlow v5 PDUs. These directories are where
the NetFlow Collector writes its data files.

probe Echo netflow-v5

poll-directory /home/cisco/collector/echo

end probe

probe Foxtrot netflow-v5

poll-directory /home/cisco/collector/foxtrot

end probe

When creating probes to collect IPFIX data that includes 802.1Q VLAN identifiers, SiLK can store these
values (IPFIX’s vlanId and postVlanId fields) in the SiLK Flow record’s fields that typically hold the
SNMP interfaces (input and output). In the sensor block, rwflowpack can use the values to discard certain
flow records. The “Golf” and “Hotel” probes will extract and store the VLAN identifiers.

probe Golf ipfix

interface-values vlan

listen-on-port 9909

SiLK -3.23.0 37

SiLK -3.23.0 SiLK Installation Handbook

protocol tcp

end probe

probe Hotel ipfix

interface-values vlan

poll-directory /home/ipfix/hotel

end probe

4.1.2 Group Block

A group block gives a name to a list of either CIDR blocks or interface values. To reference an existing
group, type an “at” character (@) followed by the name of the group. A group reference can be used in group
blocks or in several statements in the sensor block as described in the next section. When using a group
reference, the group must contain values consistent with the statement where the group is being used.

group One

interfaces 2, 3

interfaces 4

end group

group Two

interfaces 5, @One

end group

group Three

ipblocks 10.0.1.0/24, 10.0.3.0/24

ipblocks 10.0.5.0/24

end group

group Four

ipblocks 10.0.7.0/24, @Three

end group

4.1.3 Sensor Block

The sensor block configures a sensor. The name of the sensor block must be the name of a sensor defined in
the silk.conf site configuration file (cf. Section 3.1). The sensor block specifies which probes are associated
with that sensor. Whenever flow data arrives on a probe, the sensor associated with the probe notices the
data and processes it. The sensor’s processing of the flow data uses the other attributes defined in the sensor
block to categorize the flows. Some examples are given here; for the details on how the packlogic-twoway.so
plug-in uses this information, see Appendix A.

The following sensor block instructs rwflowpack to categorize a flow from the “Alpha” probe as “incoming”
when the incoming SNMP interface on the flow is 3 or 8. All other flows are considered outgoing. Flows
processed by this rule are labeled as being from the “Alpha” sensor.

sensor Alpha

netflow-v5-probes Alpha

external-interface 3,8

internal-interface remainder

end sensor

The following example is the same as the previous, but it uses the group “Alpha-external” to specify the
external interfaces.

38 SiLK -3.23.0

SiLK Installation Handbook SiLK -3.23.0

group Alpha-external

interfaces 3,8

end group

sensor Alpha

netflow-v5-probes Alpha

external-interface @Alpha-external

internal-interface remainder

end sensor

The next block processes IPFIX flows collected by the “Bravo-ipfix” probe. If the source address is not
in 192.168.12.0/24, the flow is considered incoming; otherwise, it is considered outgoing. These flows have
“Bravo” as their sensor.

sensor Bravo

ipfix-probes Bravo-ipfix

internal-ipblock 192.168.12.0/24

external-ipblock remainder

end sensor

The following example uses a group when creating the “Bravo” sensor.

group my-network

ipblocks 192.168.12.0/24

end group

sensor Bravo

ipfix-probes Bravo-ipfix

internal-ipblock @my-network

external-ipblock remainder

end sensor

For the following sensor, rwflowpack categorizes a flow as incoming if its incoming SNMP interface is 7; an
outgoing SNMP interface of 2 means the flow did not leave the router.

sensor Charlie

netflow-v5-probes Charlie

external-interface 7

null-interface 2

internal-interface remainder

end sensor

The data from the “Delta-in” and “Delta-out” probes above are merged into a single “Delta” sensor by
creating two sensor blocks that each pack to the same sensor. All flows collected by “Delta-in” will be
labeled as incoming; those collected by “Delta-out” as outgoing.

sensor Delta

ipfix-probes Delta-in

source-network external

destination-network internal

end sensor

sensor Delta

SiLK -3.23.0 39

SiLK -3.23.0 SiLK Installation Handbook

ipfix-probes Delta-out

source-network internal

destination-network external

end sensor

The following sensor packs flows collected by the “Echo” probe above, but it discards data that was blocked
by the router—that is, traffic that went to the null interface will not be packed. The sensor definition assumes
the null interface is 0 and the group “internet-nics” specifies the network cards on the router that face the
Internet.

sensor Echo

netflow-v5-probes Echo

discard-when destination-interfaces 0

external-interfaces @internet-nics

internal-interfaces remainder

end sensor

When the same probe is specified in multiple sensors, each sensor has a chance to process the flows. Suppose
“Fox” and “Trot” are two sensors whose address space is defined in the groups “fox-net” and “trot-net”,
and suppose each sensor processes the data collected by the “Foxtrot” probe. Note that the “Fox” sensor
will see data between “trot-net” and the Internet, and rwflowpack would normally pack that data at “Fox”
as external-to-external (“ext2ext”) traffic since it does not involve “fox-net”; however, that may not be
desirable. The following causes rwflowpack to discard data that is not associated with the appropriate
address space.

sensor Fox

netflow-v5-probes Foxtrot

discard-unless any-ipblocks @fox-net

internal-ipblocks @fox-net

external-ipblocks remainder

end sensor

sensor Trot

netflow-v5-probes Foxtrot

discard-unless any-ipblocks @trot-net

internal-ipblocks @trot-net

external-ipblocks remainder

end sensor

The following example is similar to the previous in that multiple sensors get data from a single probe, except
it discards traffic based on the VLAN identifiers that the “Golf” probe stored in the flow records. The first
three sensors only pack traffic that match their specific VLAN identifier, while the “Golf-Extra” sensor will
pack any traffic that was not stored in the other three sensors.

sensor Golf-Birdie

ipfix-probes Golf

discard-unless source-interfaces 1

internal-ipblocks @birdie-ips

external-ipblocks remainder

end sensor

sensor Golf-Eagle

40 SiLK -3.23.0

SiLK Installation Handbook SiLK-3.23.0

ipfix-probes Golf

discard-unless source-interfaces 2

internal-ipblocks @eagle-ips

external-ipblocks remainder

end sensor

sensor Golf-Albatross

ipfix-probes Golf

discard-unless source-interfaces 3

internal-ipblocks @albatross-ips

external-ipblocks remainder

end sensor

sensor Golf-Extra

ipfix-probes Golf

discard-when source-interfaces 1 2 3

internal-ipblocks @birdie-ips @eagle-ips @albatross-ips

external-ipblocks remainder

end sensor

4.1.4 Summary

The following summarizes the most commonly used statements in the sensor.conf file. For the full syntax
and additional examples, see the sensor.conf(5) manual page.

probe names the probe and specifies the type of data the probe should expect. The type of probe affects
what other attributes are required.

listen-on-port tells the flow collector (rwflowpack or flowcap) the port number on which to listen for
IPFIX, NetFlow v5, or NetFlow v9 data. The value should be one of the ports used when configuring
YAF (Section 8.1) or the router (Section 8.2).

poll-directory tells rwflowpack to query the named directory for files containing NetFlow v5 data, files
created by YAF, or files containing SiLK flow records.

protocol gives the IP protocol associated with the listen-on-port value, and it is required whenever
listen-on-port is specified. NetFlow probes support the udp protocol, and IPFIX probes support
tcp and udp.

accept-from-host expects a host address as its value, and it specifies the IP from which rwflowpack or
flowcap will accept incoming flow records. When this attribute is not present, the daemon accepts
packets from any host.

interface-values determines whether snmp or vlan values should be stored in the records read from probe.
The default is snmp.

group provides a way to name a list of CIDR blocks or a list of non-negative integers representing interface
values. This name can be used in other group blocks and in various statements in the sensor block.

sensor names the sensor for which data is being packed. The value must be a known sensor listed in the
silk.conf file.

PROBE-TYPE -probes specifies the names and types of the probes to use as a data source for this sensor.
This statement is required.

SiLK-3.23.0 41

SiLK-3.23.0 SiLK Installation Handbook

NETWORK-NAME -interfaces specifies the SNMP interfaces on the router that face NETWORK-NAME. The
value to the statement must be a one or more non-negative integers and/or groups containing interface
values. The keyword remainder can be used to signify all interfaces not listed on other interfaces.
The remainder keyword can only appear once within a sensor block. The legal values of NETWORK-
NAME are defined in the packing logic plug-in that rwflowpack loads. For the packlogic-twoway.so
plug-in:

external-interfaces lists the interfaces where traffic is coming into the monitored network from the
outside

internal-interfaces lists the interfaces facing the monitored network

null-interfaces lists the interface your router uses for a flow record that did not leave the router,
either because the flow was blocked by an ACL violation, or because the flow represented packets
that were destined for the router itself (e.g., a routing protocol message)

NETWORK-NAME -ipblocks specifies the IP space of NETWORK-NAME. Its value is a CIDR block, a group
containing CIDR blocks, a comma separated list of CIDR blocks and/or groups, or the keyword
remainder to specify all CIDR blocks not assigned to other ipblocks. The legal values of NETWORK-
NAME are defined in the packing logic plug-in that rwflowpack loads. Taking the twoway packing
logic as an example, internal-ipblocks lists the IP space of the monitored network.

source-network takes a NETWORK-NAME as its argument. This statement specifies that all traffic seen
by the associated probe(s) should be considered as coming from the named network. The legal network
names are defined in the packing logic plug-in that rwflowpack loads.

destination-network takes a NETWORK-NAME as its argument. This statement specifies that all traffic
seen by the associated probe(s) should be considered as going to the named network.

discard-when source-interfaces discards traffic when the record’s input field matches one of the values
in the list of interfaces or groups containing interfaces.

discard-unless source-interfaces discards traffic when the record’s input field does not match any of
the values in the list of interfaces or groups containing interfaces.

discard-when destination-interfaces discards traffic when the record’s output field matches one of the
values in the list of interfaces or groups containing interfaces.

discard-unless destination-interfaces discards traffic when the record’s output field does not match
any of the values in the list of interfaces or groups containing interfaces.

discard-when any-interfaces discards traffic when either the record’s input field or the record’s output
field matches one of the values in the list of interfaces or groups containing interfaces.

discard-unless any-interfaces discards traffic when neither the record’s input field nor the record’s
output field matches any of the values in the list of interfaces or groups containing interfaces.

discard-when source-ipblocks discards traffic when the record’s sIP matches one of the values in the list
of CIDR blocks or groups containing CIDR blocks.

discard-unless source-ipblocks discards traffic when the record’s sIP does not match any of the values
in the list of CIDR blocks or groups containing CIDR blocks.

discard-when destination-ipblocks discards traffic when the record’s dIP matches one of the values in
the list of CIDR blocks or groups containing CIDR blocks.

discard-unless destination-ipblocks discards traffic when the record’s dIP does not match any of the
values in the list of CIDR blocks or groups containing CIDR blocks.

42 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

discard-when any-ipblocks discards traffic when either the record’s sIP or the record’s dIP matches one
of the values in the list of CIDR blocks or groups containing CIDR blocks.

discard-unless any-ipblocks discards traffic when neither the record’s sIP nor the record’s dIP matches
any of the values in the list of CIDR blocks or groups containing CIDR blocks.

4.2 Install the software

1. Choose locations and create the following directories if they do not exist:

SILK PATH. The root of the directory tree where SiLK will be installed. Pass this value to the
configure in the --prefix switch (cf. Section 2.2). If not specified, the default is /usr/local.

SILK DATA ROOTDIR. The root of the directory tree where the SiLK Flow files are permanently
stored. This should correspond to the --enable-data-rootdir value that was passed to the
configure script (see Section 2.2). If you do not pass that switch to configure, /data is the
name of the directory.

SCRIPT CONFIG LOCATION. The directory containing configuration files used by daemons.
Often this is the /etc directory for system daemons; RedHat Linux uses /etc/sysconfig for
this value. The value SiLK uses is determined by the --sysconfdir switch to configure, and it
defaults to $SILK PATH/etc if the --sysconfdir switch was not given. When you ran configure,
the example sh-scripts described in the next section were modified to use this location.

CONFIG FILE DIR. An additional directory for configuration files; these files also may be used by
daemons. We recommend using $SILK PATH/etc/silk/ for this directory, though you may use
$SILK PATH/share/silk/ or the SCRIPT CONFIG LOCATION for this setting. There is
no part of SiLK that requires this to be in a particular location.

LOGGING DIR. The directory in which rwflowpack’s process identifier (PID) and log files are
written.

2. Build and install the SiLK software as described in Sections 2 and 3. Be certain to customize silk.conf
and install it in the SILK DATA ROOTDIR directory.

3. Follow the instructions in Section 4.1 to create the Sensor Configuration file, and copy the file into the
CONFIG FILE DIR directory.

4.3 Customize the rwflowpack.conf configuration file

To provide easier control of the SiLK daemons in UNIX-like environments, example sh-scripts are provided.
The names of these scripts are the same as the daemon they control. The scripts are installed in the
$SILK PATH/share/silk/etc/init.d/ directory, but you should copy them to the standard location for
start-up scripts on your system (e.g., /etc/init.d/ on Linux and other SysV-type systems).

To generate the command line for the daemon named daemon , the control script checks settings in the
text file SCRIPT CONFIG LOCATION/daemon.conf. Before using a control script, you must create
a daemon.conf file and customize it for your environment.

For each daemon, an example configuration file is installed in the $SILK PATH/share/silk/etc/ directory.
You will need to copy the file to the SCRIPT CONFIG LOCATION directory and modify it as described
in this section. (The format of these configuration files may change between releases of SiLK. When upgrading
from a previous release, you should merge your previous settings into the new version of the configuration
file.)

SiLK-3.23.0 43

SiLK -3.23.0 SiLK Installation Handbook

You should not need to edit any of the control scripts; however, be aware the value of
SCRIPT CONFIG LOCATION they use was set when you ran configure.

Many of the variable names in rwflowpack.conf correspond to a command line switch on rwflowpack. By
referencing the rwflowpack manual page and the documentation for each variable in that file, you should
be able to determine how set each variable. This section highlights some of the settings. The switch that
the variable controls follows each name.

SENSOR CONFIG. (--sensor-configuration) This variable contains the full path to the Sensor Con-
figuration file you created in Section 4.1 and copied into the CONFIG FILE DIR directory above.

PACKING LOGIC. (--packing-logic) This variable may be blank or it may contain the name of (or the
path to) the plug-in that rwflowpack will load to get the “packing logic” it uses. The packing logic spec-
ifies how rwflowpack determines into which category each flow record is written (for example, whether
a record is incoming or outgoing). The packing logic uses values from the SENSOR CONFIG file.
You may also specify the packing logic plug-in with the packing-logic statement in the silk.conf

site configuration file. The PACKING LOGIC value must be empty if SiLK was configured without
support for the packing logic plug-in (cf. Section 2.3.8).

DATA ROOTDIR. (--root-directory) This variable specifies the root directory for packed SiLK data
files. Set this switch to the SILK DATA ROOTDIR value you chose above.

INPUT MODE. (--input-mode) This variable determines whether data is being read directly from the
network or whether rwflowpack is processing files generated by flowcap. Verify that it says stream.

OUTPUT MODE. (--output-mode) This variable determines whether rwflowpack writes to the reposi-
tory itself or relies on rwflowappend to write to the repository. Verify that it says local-storage.

ENABLED. Set this variable to any non-empty value. It is used by the control script to determine whether
the administrator has completed the configuration.

CREATE DIRECTORIES. When this value is yes, the control script creates any directories that the
daemon requires but are nonexistent.

LOG TYPE. The daemons support writing their log messages to the syslog(3) facility or to local log files
rotated at midnight local time. Set this to syslog to use syslog, or to legacy to use local log files.

LOG DIR. When the LOG TYPE is legacy, the logging files are written to this directory. Set this
variable to the LOGGING DIR value you chose above. The /var/log directory is often used for log
files.

PID DIR. The daemons write their process identifier (PID) to a file in this directory. By default this
variable has the same value as LOG DIR, but you may wish to change it. On many systems, the
/var/run directory holds this information.

USER. The control script switches to this user (see su(1)) when starting the daemon. The default user is
root. Note that all of SiLK can be run as an ordinary user.

Save the rwflowpack.conf file into the SCRIPT CONFIG LOCATION directory that you created
above.

44 SiLK -3.23.0

SiLK Installation Handbook SiLK-3.23.0

4.4 Test the settings

To test whether everything is correct, try starting rwflowpack using the control script:

$ sh $SILK PATH/share/silk/etc/init.d/rwflowpack start

Starting rwflowpack: [OK]

$

If rwflowpack fails to start, it prints an error message to the standard error. If everything is correct,
rwflowpack writes a file named rwflowpack.pid into the PID DIR directory, and log messages are written
either to files in LOG DIR or to your machine’s system log.

You can use the control script to stop rwflowpack:

$ sh $SILK PATH/share/silk/etc/init.d/rwflowpack stop

Stopping rwflowpack: WARNING sleeping for 10 seconds

[OK]

$

The log messages that rwflowpack generates (assuming no data was collected) will resemble:

Mar 26 19:04:31 sst rwflowpack[9933]: /usr/sbin/rwflowpack --pidfile=...

Mar 26 19:04:31 sst rwflowpack[9933]: Forked child 9935. Parent exiting

Mar 26 19:04:31 sst rwflowpack[9935]: Creating stream cache

Mar 26 19:04:51 sst rwflowpack[9935]: Shutting down due to SIGINT signal

Mar 26 19:04:51 sst rwflowpack[9935]: Begin shutting down...

Mar 26 19:04:51 sst rwflowpack[9935]: Stopping processors

Mar 26 19:04:53 sst rwflowpack[9935]: Waiting for record handlers.

Mar 26 19:04:53 sst rwflowpack[9935]: Closing all files.

Mar 26 19:04:53 sst rwflowpack[9935]: Finished shutting down.

Mar 26 19:04:53 sst rwflowpack[9935]: Stopped logging.

4.5 Enable automatic invocation

If you wish, you can make rwflowpack start automatically when the machine boots by adding the rwflowpack
control script to your machine’s boot sequence. The details vary among operating systems.

For RedHat Linux, issue the following commands:

cp $SILK_PATH/share/silk/etc/init.d/rwflowpack /etc/init.d/rwflowpack

chkconfig --add rwflowpack

At this point, you should be able to start the packer using the following command:

service rwflowpack start

4.6 Start the flow generator

Follow the instructions in Section 8 to start the flow generator.

SiLK-3.23.0 45

SiLK-3.23.0 SiLK Installation Handbook

If rwflowpack is listening for NetFlow traffic on UDP port(s), follow the instructions in Section 8.3 to
increase the maximum socket buffer size allowed by your kernel.

46 SiLK-3.23.0

5

Remote Collection and Flow Storage

This section describes how to configure your site to use the packing configuration that supports remote data
collection and remote SiLK Flow storage (see Figures 1.3 and 1.4).

For this configuration, there are three sets of machines:

• One or more machines act as collection machines. Each collection machine runs the flowcap daemon to
collect the flows and store them in “flowcap files”. The rwsender daemon also runs on each collection
machine, and it transfers the files from the collection machine to the packing machine.

• There is typically one machine, called the packing machine, that runs rwflowpack to read the files
generated by flowcap, to convert the flow records they contain, to categorize flows, and to write
“incremental files” containing small numbers of SiLK flow records. The packing machine runs an
rwreceiver process to accept the files from the collection machines, and it runs the rwsender daemon
to transfer the incremental files from the packing machine to each storage machine.

• One or more storage machines run the rwreceiver daemon to receive the incremental files, and the
rwflowappend daemon appends the incremental files to their final location in hourly files. In addition,
each storage machine has the SiLK analysis tools installed to read and analyze the data in the hourly
files.

If this does not describe your packing configuration, refer to the list of possible configurations in Section 1.3.

These instructions assume the rwreceiver and rwsender daemons on the packing machine always act as
clients. That is, the rwsender on each collection machine runs in server mode as does the rwreceiver on
each storage machine.

For an installation that uses remote data collection and SiLK Flow storage, you must build, install, and
configure the software on the packing machine as well as on every collection machine and storage machine.

5.1 Packing machine, part 1

The packing machine runs three daemons:

• rwreceiver receives flowcap files from the collection machines

• rwflowpack converts and categorizes the flows it reads from the flowcap files and creates incremental
files.

47

SiLK-3.23.0 SiLK Installation Handbook

• rwsender transfers the incremental files to the storage machines.

In this section you configure and build the software, and configure rwflowpack. The configuration of
rwreceiver and rwsender occur in later sections (5.3 and 5.5, respectively).

5.1.1 Install the software

1. Choose locations and create the following directories if they do not exist:

SILK PATH. The root of the directory tree where SiLK will be installed. Pass this value to the
configure in the --prefix switch (cf. Section 2.2). If not specified, the default is /usr/local.

PACKER INCOMING. The directory where rwreceiver deposits the flowcap files for processing
by rwflowpack.

PACKER DEST. The directory where rwflowpack writes the incremental files for delivery to
rwflowappend. rwsender polls this directory and accepts the files that it finds for delivery to the
rwreceiver processes on the storage machines.

SENDER WORK. The directory where rwsender stores the files that it has accepted but not yet
sent to the intended rwreceiver(s).

SENDER ERROR. The directory where rwsender stores the files that are not accepted by
rwreceiver.

SCRIPT CONFIG LOCATION. The directory containing configuration files used by daemons.
Often this is the /etc directory for system daemons; RedHat Linux uses /etc/sysconfig for
this value. The value SiLK uses is determined by the --sysconfdir switch to configure, and it
defaults to $SILK PATH/etc if the --sysconfdir switch was not given. When you ran configure,
the example sh-scripts described in the next section were modified to use this location.

CONFIG FILE DIR. An additional directory for configuration files; these files also may be used by
daemons. We recommend using $SILK PATH/etc/silk/ for this directory, though you may use
$SILK PATH/share/silk/ or the SCRIPT CONFIG LOCATION for this setting. There is
no part of SiLK that requires this to be in a particular location.

LOGGING DIR. The directory in which the process identifier (PID) and log files for rwflowpack,
rwreceiver, and rwsender are written.

2. Build and install the SiLK software as described in Section 2. Since you will not be storing the
SiLK flows on the packing machine, you may ignore the --enable-data-rootdir switch. For
faster compilation and to save disk space, you can avoid building the analysis tools by passing the
--disable-analysis-tools switch to configure.

3. Follow the instructions in Section 3.1 to customize the silk.conf file, and save it to
$SILK PATH/share/silk/silk.conf so rwflowpack will locate it. You can ignore the remainder of
Section 3 on the packing machine.

4. Follow the instructions in Section 4.1 to create the Sensor Configuration file, and copy the file into the
CONFIG FILE DIR directory.

5.1.2 Customize and install rwflowpack

rwflowpack runs on the packing machine to process files generated by flowcap and create incremental files
for rwflowappend.

48 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

5.1.2.1 Customize the rwflowpack.conf configuration file

To provide easier control of the SiLK daemons in UNIX-like environments, example sh-scripts are provided.
The names of these scripts are the same as the daemon they control. The scripts are installed in the
$SILK PATH/share/silk/etc/init.d/ directory, but you should copy them to the standard location for
start-up scripts on your system (e.g., /etc/init.d/ on Linux and other SysV-type systems).

To generate the command line for the daemon named daemon , the control script checks settings in the
text file SCRIPT CONFIG LOCATION/daemon.conf. Before using a control script, you must create
a daemon.conf file and customize it for your environment.

For each daemon, an example configuration file is installed in the $SILK PATH/share/silk/etc/ directory.
You will need to copy the file to the SCRIPT CONFIG LOCATION directory and modify it as described
in this section. (The format of these configuration files may change between releases of SiLK. When upgrading
from a previous release, you should merge your previous settings into the new version of the configuration
file.)

You should not need to edit any of the control scripts; however, be aware the value of
SCRIPT CONFIG LOCATION they use was set when you ran configure.

Many of the variable names in rwflowpack.conf correspond to a command line switch on rwflowpack. By
referencing the rwflowpack manual page and the documentation for each variable in that file, you should
be able to determine how set each variable. This section highlights some of the settings. The switch that
the variable controls follows each name.

SENSOR CONFIG. (--sensor-configuration) This variable contains the full path to the Sensor Con-
figuration file you created in Section 4.1 and copied into the CONFIG FILE DIR directory above.

PACKING LOGIC. (--packing-logic) This variable may be blank or it may contain the name of (or the
path to) the plug-in that rwflowpack will load to get the “packing logic” it uses. The packing logic spec-
ifies how rwflowpack determines into which category each flow record is written (for example, whether
a record is incoming or outgoing). The packing logic uses values from the SENSOR CONFIG file.
You may also specify the packing logic plug-in with the packing-logic statement in the silk.conf

site configuration file. The PACKING LOGIC value must be empty if SiLK was configured without
support for the packing logic plug-in (cf. Section 2.3.8).

INCOMING DIR. (--incoming-directory). This variable specifies where rwflowpack looks for flowcap
files. Set this to the PACKER INCOMING value you chose above.

ARCHIVE DIR. (--archive-directory) If this variable is set, rwflowpack archives the flowcap files
after it has processed them. Unset this variable to disable archiving, or enter the full path to your
archive directory.

INCREMENTAL DIR. (--incremental-directory) This variable names the full path of the directory
where rwflowpack writes the incremental files for processing by rwsender. Set this variable to the
PACKER DEST value you chose above. (Note: This configuration is valid for SiLK-3.6.0 and later;
for older rwflowpacks, see that version’s Installation Handbook.)

INPUT MODE. (--input-mode) This variable determines whether data is being read directly from the
network or whether rwflowpack is processing files generated by flowcap. Verify that it says fcfiles.

OUTPUT MODE. (--output-mode) This variable determines whether rwflowpack writes to the reposi-
tory itself or relies on rwflowappend to write to the repository. Verify that it says sending.

The following settings are common across all daemon.conf files:

SiLK-3.23.0 49

SiLK-3.23.0 SiLK Installation Handbook

ENABLED. Set this variable to any non-empty value. It is used by the control script to determine whether
the administrator has completed the configuration.

CREATE DIRECTORIES. When this value is yes, the control script creates any directories that the
daemon requires but are nonexistent.

LOG TYPE. The daemons support writing their log messages to the syslog(3) facility or to local log files
rotated at midnight local time. Set this to syslog to use syslog, or to legacy to use local log files.

LOG DIR. When the LOG TYPE is legacy, the logging files are written to this directory. Set this
variable to the LOGGING DIR value you chose above. The /var/log directory is often used for log
files.

PID DIR. The daemons write their process identifier (PID) to a file in this directory. By default this
variable has the same value as LOG DIR, but you may wish to change it. On many systems, the
/var/run directory holds this information.

USER. The control script switches to this user (see su(1)) when starting the daemon. The default user is
root. Note that all of SiLK can be run as an ordinary user.

Save the rwflowpack.conf file into the SCRIPT CONFIG LOCATION directory that you created
above.

5.1.2.2 Test the rwflowpack.conf settings

To test whether the settings in rwflowpack.conf are correct, use the control script to start rwflowpack:

$ sh $SILK PATH/share/silk/etc/init.d/rwflowpack start

Starting rwflowpack: [OK]

$

If rwflowpack fails to start, it prints an error message to the standard error. If everything is correct,
rwflowpack writes a file named rwflowpack.pid into the PID DIR directory, and log messages are written
either to files in LOG DIR or to your machine’s system log.

You can stop rwflowpack while you configure the other parts of the system:

$ sh $SILK PATH/share/silk/etc/init.d/rwflowpack stop

Stopping rwflowpack: WARNING sleeping for 10 seconds

[OK]

$

The log messages that rwflowpack generates will resemble:

Mar 26 17:38:48 sst rwflowpack[8965]: /usr/sbin/rwflowpack --pidfile=...

Mar 26 17:38:48 sst rwflowpack[8965]: Forked child 8967. Parent exiting

Mar 26 17:38:48 sst rwflowpack[8967]: Creating stream cache

Mar 26 17:38:53 sst rwflowpack[8967]: Shutting down due to SIGINT signal

Mar 26 17:38:53 sst rwflowpack[8967]: Begin shutting down...

Mar 26 17:38:53 sst rwflowpack[8967]: Stopping processors

Mar 26 17:38:55 sst rwflowpack[8967]: Waiting for record handlers.

Mar 26 17:38:55 sst rwflowpack[8967]: Closing all files.

Mar 26 17:38:55 sst rwflowpack[8967]: Finished shutting down.

Mar 26 17:38:55 sst rwflowpack[8967]: Stopped logging.

50 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

5.1.2.3 Enable automatic invocation of rwflowpack

If you wish, you can make rwflowpack start automatically when the packing machine boots by adding the
rwflowpack control script to its boot sequence. The details vary among operating systems.

For RedHat Linux, issue the following commands:

cp $SILK_PATH/share/silk/etc/init.d/rwflowpack /etc/init.d/rwflowpack

chkconfig --add rwflowpack

At this point, you should be able to start and stop the packer using the following commands:

service rwflowpack start

service rwflowpack stop

5.1.3 Create an identifier for rwreceiver

rwreceiver runs on the packing machine to accept, from the collection machine(s), the files generated by
flowcap and sent by rwsender.

Each rwsender and rwreceiver is configured with an identifier of its own and the identifier(s) of the
rwreceiver(s) or rwsender(s) that may connect to it. The connection will not be established if the identifier
provided by other process is not recognized. In addition, every rwsender that communicates with the same
rwreceiver must have a unique identifier; likewise, every rwreceiver that communicates with the same
rwsender must have a unique identifier.

Create the identifier that the rwreceiver client on the packing machine sends when it contacts the rwsender
daemon running on each collection machine. The identifier should contain only printable, non-whitespace
characters; the following characters are illegal: colon (:), slash (/ and \), period (.), and comma (,).

The identifier should reflect that this is the rwreceiver process associated with the packer. These instruc-
tions use rcv-packer1.

You will use this identifier when you set up the rwsender daemon on each collection machine in Section 5.2.3,
and when you configure rwreceiver on the packing machine (Section 5.3).

5.1.4 Create an identifier for rwsender

rwsender runs on the packing machine to transfer the incremental files generated by rwflowpack to the
rwreceiver and rwflowappend processes on the storage machines.

Create the identifier that the rwsender client on the packing machine sends when it contacts the rwreceiver
daemon running on each storage machine. The identifier should contain only printable, non-whitespace
characters; the following characters are illegal: colon (:), slash (/ and \), period (.), and comma (,).

The identifier should reflect that this is the rwsender process associated with the packer. These instructions
suggest you use send-packer1.

You will use this identifier when you set up the rwreceiver daemon on each storage machine in Section 5.4.3,
and when you configure rwsender on the packing machine (Section 5.5).

SiLK-3.23.0 51

SiLK-3.23.0 SiLK Installation Handbook

5.1.5 Create keys and certificates for GnuTLS security

If SiLK is compiled with GnuTLS support (see Section 2.3.12), rwsender and rwreceiver can communicate
using a secure (encrypted and authenticated) layer over TCP. If SiLK was not compiled with GnuTLS
support or you do not wish to use this feature, you may skip this section.

When the GnuTLS-specific options are specified, rwsender and rwreceiver use GnuTLS for all commu-
nications with other rwreceivers and rwsenders. The applications will not allow communication to an
application that is not using GnuTLS. If you wish to use GnuTLS for some communication but not others,
you will need to run multiple instances of rwsender and rwreceiver.

To use this feature, the rwsender and rwreceiver each need access to the PEM (Privacy Enhanced Mail)
encoded root Certificate Authority (CA) file and either to a DER (Distinguished Encoding Rules) encoded
PKCS#12 file or to a PEM encoded key and a PEM encoded certificate file. See Appendix C for instructions
on creating these files using the GnuTLS certtool program.

The communication between rwsender and rwreceiver will be established as long as the PKCS#12 file or
the key and certificate files both have the same CA. You can create a single key and certificate and use that
on for all instances of rwsender and rwreceiver, or create a separate certificate/key pair for each instance
of these programs.

For simplicity, these instructions assume you will use a single PKCS#12 file, named pkcs12.der, for all
communication between any rwsender and rwreceiver. In addition, the instructions use rootcert.pem

for the name of the CA root certificate file. These files should be installed in the CONFIG FILE DIR
directory on the packing machine.

5.2 Remote collection machine

In Section 4.1, you created the Sensor Configuration file listing all the sensors and probes in your network.
The instructions that follow assume that every collection machine is associated with a unique sensor named
SENSOR.

Each collection machine runs two daemons:

• flowcap collects flows for SENSOR, compresses the flows, and stores them in a local directory.

• rwsender transfers the files created by flowcap to the packing machine.

You will perform these steps on every machine where remote collection occurs.

5.2.1 Install the software

1. Choose locations and create the following directories if they do not exist:

SILK PATH. The root of the directory tree where SiLK will be installed. Pass this value to the
configure in the --prefix switch (cf. Section 2.2). If not specified, the default is /usr/local.

FLOWCAP DEST. The directory where flowcap writes the files it creates. rwsender polls this
directory and accepts the files that it finds for delivery to the rwreceiver process running on the
packing machine.

SENDER WORK. The directory where rwsender stores the files that it has accepted but not yet
sent to the intended rwreceiver(s).

52 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

SENDER ERROR. The directory where rwsender stores the files that are not accepted by
rwreceiver.

SCRIPT CONFIG LOCATION. The directory for configuration files used by daemons.

CONFIG FILE DIR. An additional directory for configuration files; these files also may be used by
daemons.

LOGGING DIR. The directory in which flowcap’s and rwsender’s process identifier (PID) and log
files are written.

2. Build and install the SiLK software as described in Section 2. Since you will not be storing the SiLK
flows on the collection machine, you may ignore the --enable-data-rootdir switch on this machine.
For faster compilation and to save disk space, you can avoid building the analysis tools by passing the
--disable-analysis-tools switch to configure.

3. Copy the silk.conf file from the packing machine to this machine. If you save it in
$SILK PATH/share/silk/silk.conf, flowcap will automatically find it.

4. Copy the Sensor Configuration file from the packing machine to this machine and save it in the
CONFIG FILE DIR directory.

5. If you are using GnuTLS, copy the rootcert.pem and pkcs12.der files that you created on the packing
machine in Section 5.1.5 into the CONFIG FILE DIR directory on this machine.

5.2.2 Customize and install flowcap

flowcap runs on the collection machine to capture flow records and store them in files for transfer to the
packing machine.

5.2.2.1 Customize the flowcap.conf configuration file

The SCRIPT CONFIG LOCATION/flowcap.conf file is used by the control script to generate the
command line for flowcap. An example flowcap.conf file is available in the $SILK PATH/share/silk/etc/

directory. These are the variables in the flowcap.conf file you will need to change:

SENSOR CONFIG. (--sensor-configuration) This variable contains the full path to the Sensor Con-
figuration file you created in Section 4.1 and copied into the CONFIG FILE DIR directory above.

PROBES. (--probes) This variable causes flowcap to collect data from a subset of the probes specified
in the Sensor Configuration file. Assuming you have created a single Sensor Configuration file that you
are sharing across all collection machines, you need to set this variable to the name(s) of the probe(s)
used by SENSOR.

MODE. This variable determines whether flowcap relies on rwsender to deliver the files or acts as stand-
alone server. Verify that it says local to use rwsender.

DESTINATION DIR. (--destination-directory) This variable contains the full path to the directory
where flowcap deposits its files for collection by rwsender. Set this to the FLOWCAP DEST value
you specified above.

Check that the values for the maximum percentage of the disk to use (FULLSPACE MAX) and the
minimum amount of free space to leave (FREESPACE MIN) make sense at your site. The values specified
in the file as shipped assume a single disk partition is dedicated to storing the files generated by flowcap.

SiLK-3.23.0 53

SiLK-3.23.0 SiLK Installation Handbook

You will also need to change some of the following; they are the same as those described for rwflowpack.conf
on page 49:

ENABLED. Whether this file has been configured.
CREATE DIRECTORIES. Whether to create directories.
LOG TYPE. The type of logging.
LOG DIR. The directory for log files.
PID DIR. The directory for the PID file.
USER. The user to run as.

Save the flowcap.conf file into the SCRIPT CONFIG LOCATION directory that you created above.

5.2.2.2 Test the flowcap.conf settings

Check the settings in flowcap.conf by using the control script to start and stop flowcap (cf. Section 5.1.2.2):

$ sh $SILK PATH/share/silk/etc/init.d/flowcap start

$ sh $SILK PATH/share/silk/etc/init.d/flowcap stop

The log messages that flowcap generates will resemble:

Mar 26 17:20:34 sst flowcap[8810]: /usr/sbin/flowcap --pidfile=...

Mar 26 17:20:34 sst flowcap[8810]: Forked child 8812. Parent exiting

Mar 26 17:20:34 sst flowcap[8812]: Opening new file.

Mar 26 17:20:34 sst flowcap[8812]: Opened new file 20070326212034_S0_ne...

...

Mar 26 17:20:42 sst flowcap[8812]: Removing empty file 20070326212034_S...

Mar 26 17:20:42 sst flowcap[8812]: Finished closing 20070326212034_S0_n...

Mar 26 17:20:42 sst flowcap[8812]: Stopped logging.

5.2.2.3 Enable automatic invocation of flowcap

Add the flowcap control script to the collection machine’s boot sequence if you want flowcap to start when
the machine boots. This process is similar to the one you followed for rwflowpack (see Section 5.1.2.3).

5.2.3 Customize and install rwsender

rwsender runs on the collection machine to transfer the files generated by flowcap to the rwreceiver

daemon running on the packing machine.

5.2.3.1 Customize the rwsender.conf configuration file

The SCRIPT CONFIG LOCATION/rwsender.conf file is used by the control script to gen-
erate the command line for rwsender. An example rwsender.conf file is available in the
$SILK PATH/share/silk/etc/ directory. These are the variables in the rwsender.conf file you will need
to change:

INCOMING DIR. (--incoming-directory) This variable contains the full path to the directory where
flowcap is writing files for transfer to rwflowpack. Set this to the FLOWCAP DEST value you
chose above.

54 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

PROCESSING DIR. (--processing-directory) This variable contains the full path to the directory
where rwsender moves the incremental files it has accepted but not yet transferred. Set this to the
SENDER WORK value you chose above.

ERROR DIR. (--error-directory) This variable contains the full path to the directory where rwsender
moves files that rwreceiver does not accept. One reason rwreceiver may not accept a file is if it has
recently processed a file with that same name. Set this to the SENDER ERROR value you chose
in Section 5.1.1.

IDENTIFIER. (--identifier) This variable’s value is the name that rwsender sends when it receives
a connection from the rwreceiver client. This name must be unique among all rwsender processes
that communicate with a single rwreceiver, and it should reflect that this is the rwsender for this
particular sensor. These instructions suggest you use sensor-SENSOR where SENSOR is the name of
the sensor.

MODE. (--mode) This determines whether rwsender runs as a server or a client. Verify that it says server.

PORT. (--server-port) This variable contains the port on which rwsender listens for new connections
from rwreceiver clients. You may use any value for the port, though you will have to run rwsender

as the root user if you use a value less than 1024. If you wish rwsender to listen on a particular host
address, you may prefix the port with the name or the IP address; the host and port must be separated
by a colon (:). When using an IPv6 address as the host, enclose the address in square brackets ([]),
and enclose the entire argument in single quotes (’) to prevent the shell from treating the brackets as
special characters. When the host is not provided, rwsender will listen on any address.

RECEIVER CLIENT. (--client-ident) This variable lists the identifier(s) of the rwreceiver(s) that
are allowed to connect. Since you are configuring this rwsender to transfer files to a single rwreceiver,
edit this value to contain the identifier that you selected in Section 5.1.3. If you used rcv-packer1,
the configuration file would read:

RECEIVER_CLIENTS=‘cat <<’END_RECEIVERS’ # Do not modify this line

rcv-packer1

END_RECEIVERS

‘ #Do not modify this line or the previous line

TLS CA. (--tls-ca) When this variable is set, GnuTLS is used for communication between rwsender and
rwreceiver. If you wish to use GnuTLS, set this variable to the full path to the PEM encoded CA
certificate file, rootcert.pem, that you copied into the CONFIG FILE DIR.

TLS PKCS12. (--tls-pkcs12) This variable lists the full path to the DER encoded PKCS#12 file. Set
this variable to the pkcs12.der that you copied into the CONFIG FILE DIR directory if you are
using GnuTLS.

You will also need to change some of the following; they are the same as those described for rwflowpack.conf
on page 49:

ENABLED. Whether this file has been configured.
CREATE DIRECTORIES. Whether to create directories.
LOG TYPE. The type of logging.
LOG DIR. The directory for log files.
PID DIR. The directory for the PID file.
USER. The user to run as.

Save the rwsender.conf file into the SCRIPT CONFIG LOCATION directory that you created above.

SiLK-3.23.0 55

SiLK -3.23.0 SiLK Installation Handbook

5.2.3.2 Test the rwsender.conf settings

Check the settings in rwsender.conf by using the control script to start and stop rwsender:

$ sh $SILK PATH/share/silk/etc/init.d/rwsender start

$ sh $SILK PATH/share/silk/etc/init.d/rwsender stop

The log messages that rwsender generates will resemble:

Mar 26 17:48:50 sst rwsender[9068]: /usr/sbin/rwsender --pidfile=...

Mar 26 17:48:50 sst rwsender[9068]: Forked child 9070. Parent exiting

Mar 26 17:48:50 sst rwsender[9070]: Incoming file handling thread started.

Mar 26 17:48:57 sst rwsender[9070]: Shutting down due to SIGINT signal

Mar 26 17:48:57 sst rwsender[9070]: Shutting down

Mar 26 17:48:57 sst rwsender[9070]: Incoming file handling thread stopped.

Mar 26 17:48:57 sst rwsender[9070]: Finished shutting down

Mar 26 17:48:57 sst rwsender[9070]: Stopped logging.

5.2.3.3 Enable automatic invocation of rwsender

Add the rwsender control script to the collection machine’s boot sequence if you want rwsender to start
when the machine boots. This process is similar to the one you followed for rwflowpack (see Section 5.1.2.3).

5.3 Packing machine, part 2

Now that you have created the rwsender.conf file on the collection machines, you can configure rwreceiver
on the packing machine. To recap, rwreceiver runs on the packing machine to accept, from the collection
machine(s), the files generated by flowcap and sent by rwsender.

5.3.1 Customize the rwreceiver.conf configuration file

The SCRIPT CONFIG LOCATION/rwreceiver.conf file is used by the control script to gen-
erate the command line for rwreceiver. An example rwreceiver.conf file is available in the
$SILK PATH/share/silk/etc/ directory. These are the variables in the rwreceiver.conf file you need
to change:

DESTINATION DIR. (--destination-directory) This variable contains the full path to the directory
rwflowpack is polling. Set this to the PACKER INCOMING value you chose in Section 5.1.1.

IDENTIFIER. (--identifier) This variable’s value is the name that rwreceiver sends when it contacts
each rwsender daemon. Enter the value you selected in Section 5.1.3.

MODE. (--mode) This determines whether rwreceiver runs as a server or a client. Verify that it says
client.

SENDER SERVERS. (--server-address) This variable contains multiple lines, where each line lists an
rwsender server (host and port) to contact and the identifier that was specified when that rwsender
was invoked. Using the name or IP address of each collection machine you configured and the IDEN-
TIFIER and PORT values you specified when you configured rwsender (Section 5.2.3.1), update the
SENDER SERVERS variable to read

56 SiLK -3.23.0

SiLK Installation Handbook SiLK-3.23.0

SENDER_SERVERS=‘cat <<’END_SENDERS’ # Do not modify this line

IDENTIFIER1 HOST :PORT1

IDENTIFIER2 HOST :PORT2

...

END_SENDERS

‘ #Do not modify this line or the previous line

If HOST is an IPv6 address, enclose the address in square brackets ([]).

TLS CA. (--tls-ca) When this variable is set, GnuTLS is used for communication between rwsender and
rwreceiver. If you wish to use GnuTLS, set this variable to the full path to the PEM encoded CA
certificate file, rootcert.pem, that you copied into the CONFIG FILE DIR in Section 5.1.5.

TLS PKCS12. (--tls-pkcs12) This variable lists the full path to the DER encoded PKCS#12 file. Set
this variable to the pkcs12.der that you copied into the CONFIG FILE DIR directory if you are
using GnuTLS.

You will also need to change some of the following; they are the same as those described for rwflowpack.conf
on page 49:

ENABLED. Whether this file has been configured.
CREATE DIRECTORIES. Whether to create directories.
LOG TYPE. The type of logging.
LOG DIR. The directory for log files.
PID DIR. The directory for the PID file.
USER. The user to run as.

Save the rwreceiver.conf file into the SCRIPT CONFIG LOCATION directory on the packing ma-
chine.

5.3.2 Test the rwreceiver.conf settings

Check the settings in rwreceiver.conf by using the control script to start and stop rwreceiver:

$ sh $SILK PATH/share/silk/etc/init.d/rwreceiver start

$ sh $SILK PATH/share/silk/etc/init.d/rwreceiver stop

The log messages that rwreceiver generates will resemble:

Mar 26 18:18:52 sst rwreceiver[9465]: /usr/sbin/rwreceiver --pidfile=...

Mar 26 18:18:52 sst rwreceiver[9465]: Forked child 9467. Parent exiting

Mar 26 18:19:11 sst rwreceiver[9467]: Shutting down due to SIGINT signal

Mar 26 18:19:11 sst rwreceiver[9467]: Shutting down

Mar 26 18:19:12 sst rwreceiver[9467]: Finished shutting down

Mar 26 18:19:12 sst rwreceiver[9467]: Stopped logging.

5.3.3 Enable automatic invocation of rwreceiver

Add the rwreceiver control script to the collection machine’s boot sequence if you want rwreceiver to start
when the machine boots. This process is similar to the one you followed for rwflowpack (see Section 5.1.2.3).

SiLK-3.23.0 57

SiLK-3.23.0 SiLK Installation Handbook

5.4 Remote storage machine

Each storage machine runs two daemons:

• rwreceiver receives incremental files from the packing machine.

• rwflowappend appends the SiLK flows in the incremental files to the hourly files.

Perform these steps on every storage machine where remote SiLK data storage occurs.

5.4.1 Install the software

1. Choose locations and create the following directories if they do not exist:

SILK PATH. The root of the directory tree where SiLK will be installed. Pass this value to the
configure in the --prefix switch (cf. Section 2.2). If not specified, the default is /usr/local.

SILK DATA ROOTDIR. The root of the directory tree where the SiLK Flow files are permanently
stored. This should correspond to the --enable-data-rootdir value that was passed to the
configure script (see Section 2.2). If you do not pass that switch to configure, /data is the
name of the directory.

APPEND INCOMING. The directory where rwreceiver deposits its files for processing by
rwflowappend.

APPEND ERROR. The directory where rwflowappend stores incremental files that cannot be ap-
pended to the hourly data files.

SCRIPT CONFIG LOCATION. The directory for configuration files used by daemons.

CONFIG FILE DIR. An additional directory for configuration files; these files also may be used by
daemons.

LOGGING DIR. The directory in which rwflowappend’s and rwsender’s process identifier (PID)
and log files are written.

2. Build and install the SiLK software as described in Section 2.

3. Copy the silk.conf file from the packing machine to this machine and save it in the
SILK DATA ROOTDIR directory.

4. If desired, follow the instructions from Section 3 to create your site’s address map and country code
files. You only need to do this on the first storage machine you configure. For additional storage
machines, simply copy the files from the first storage machine.

5. If you are using GnuTLS, copy the rootcert.pem and pkcs12.der files that you created on the packing
machine in Section 5.1.5 into the CONFIG FILE DIR directory on this machine.

5.4.2 Customize and install rwflowappend

rwflowappend runs on the storage machine to append the incremental files generated by rwflowpack to the
hourly data files for use by the analysis tools.

58 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

5.4.2.1 Customize the rwflowappend.conf configuration file

The SCRIPT CONFIG LOCATION/rwflowappend.conf file is used by the control script to gen-
erate the command line for rwflowappend. An example rwflowappend.conf file is available in the
$SILK PATH/share/silk/etc/ directory. These are the variables in the rwflowappend.conf file you will
need to change:

DATA ROOTDIR. (--root-directory) This variable specifies the root directory for packed SiLK data
files. Set this switch to the SILK DATA ROOTDIR value you chose above.

INCOMING DIR. (--incoming-directory) This variable contains the full path to the directory that
rwflowappend polls for incremental files. Set this to the APPEND INCOMING value you chose
above.

ERROR DIR. (--error-directory) This variable contains the full path to the directory where
rwflowappend stores incremental files that it cannot append. Set this to the APPEND ERROR
value you chose above.

ARCHIVE DIR. (--archive-directory) If this variable is set, rwflowappend archives the incremental
files after it has processed them. Unset this variable to disable archiving, or enter the full path to your
archive directory.

You will also need to change some of the following; they are the same as those described for rwflowpack.conf
on page 49:

ENABLED. Whether this file has been configured.
CREATE DIRECTORIES. Whether to create directories.
LOG TYPE. The type of logging.
LOG DIR. The directory for log files.
PID DIR. The directory for the PID file.
USER. The user to run as.

Save the rwflowappend.conf file into the SCRIPT CONFIG LOCATION directory that you created
above.

5.4.2.2 Test the rwflowappend.conf settings

Check the settings in rwflowappend.conf by using the control script to start and stop rwflowappend:

$ sh $SILK PATH/share/silk/etc/init.d/rwflowappend start

$ sh $SILK PATH/share/silk/etc/init.d/rwflowappend stop

The log messages that rwflowappend generates will resemble:

Mar 26 17:31:06 sst rwflowappend[8892]: /usr/sbin/rwflowappend --pidfile=...

Mar 26 17:31:06 sst rwflowappend[8892]: Forked child 8894. Parent exiting

Mar 26 17:31:06 sst rwflowappend[8894]: Starting file handling thread.

Mar 26 17:31:12 sst rwflowappend[8894]: Shutting down due to SIGINT signal

Mar 26 17:31:12 sst rwflowappend[8894]: Shutting down...

Mar 26 17:31:12 sst rwflowappend[8894]: Exiting file handling thread.

Mar 26 17:31:12 sst rwflowappend[8894]: Finished shutting down.

Mar 26 17:31:12 sst rwflowappend[8894]: Stopped logging.

SiLK-3.23.0 59

SiLK-3.23.0 SiLK Installation Handbook

5.4.2.3 Enable automatic invocation of rwflowappend

Add the rwflowappend control script to the collection machine’s boot sequence if you want rwflowappend
to start when the machine boots. This process is similar to the one you followed for rwflowpack (see
Section 5.1.2.3).

5.4.3 Customize and install rwreceiver

rwreceiver runs on the storage machine to accept the incremental files from the rwsender daemon running
on the packing machine.

5.4.3.1 Customize the rwreceiver.conf configuration file

The SCRIPT CONFIG LOCATION/rwreceiver.conf file is used by the control script to gen-
erate the command line for rwreceiver. An example rwreceiver.conf file is available in the
$SILK PATH/share/silk/etc/ directory. These are the variables in the rwreceiver.conf file you need
to change:

DESTINATION DIR. (--destination-directory) This variable contains the full path to the directory
rwflowappend is polling. Set this to the APPEND INCOMING value you chose above.

IDENTIFIER. (--identifier) This variable’s value is the name that rwreceiver sends when it is con-
tacted by the rwsender client. This name must be unique among all rwreceiver processes that com-
municate with a single rwsender, and it should reflect that this is the rwreceiver for rwflowappend.
These instructions use append-hostname .

MODE. (--mode) This determines whether rwreceiver runs as a server or a client. Verify that it says
server.

PORT. (--server-port) This variable contains the port on which rwreceiver listens for new connections
from rwsender clients. You may use any value for the port, though you will have to run rwreceiver

as the root user if you use a value less than 1024. If you wish rwreceiver to listen on a particular host
address, you may prefix the port with the name or the IP address; the host and port must be separated
by a colon (:). When using an IPv6 address as the host, enclose the address in square brackets ([]),
and enclose the entire argument in single quotes (’) to prevent the shell from treating the brackets as
special characters. When the host is not provided, rwreceiver will listen on any address.

SENDER CLIENT. (--client-ident) This variable lists the identifier(s) of the rwsender(s) that are
allowed to connect. Since you are configuring this rwreceiver to accept files from a single rwsender,
edit this value to contain the identifier that you selected in Section 5.1.4. If you used send-packer1,
the configuration file would read:

SENDER_CLIENTS=‘cat <<’END_SENDERS’ # Do not modify this line

send-packer1

END_SENDERS

‘ #Do not modify this line or the previous line

TLS CA. (--tls-ca) When this variable is set, GnuTLS is used for communication between rwsender and
rwreceiver. If you wish to use GnuTLS, set this variable to the full path to the PEM encoded CA
certificate file, rootcert.pem, that you copied into the CONFIG FILE DIR.

60 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

TLS PKCS12. (--tls-pkcs12) This variable lists the full path to the DER encoded PKCS#12 file. Set
this variable to the pkcs12.der that you copied into the CONFIG FILE DIR directory if you are
using GnuTLS.

You will also need to change some of the following; they are the same as those described for rwflowpack.conf
on page 49:

ENABLED. Whether this file has been configured.
CREATE DIRECTORIES. Whether to create directories.
LOG TYPE. The type of logging.
LOG DIR. The directory for log files.
PID DIR. The directory for the PID file.
USER. The user to run as.

Save the rwreceiver.conf file into the SCRIPT CONFIG LOCATION directory that you created
above.

5.4.3.2 Test the rwreceiver.conf settings

Check the settings in rwreceiver.conf by using the control script to start and stop rwreceiver:

$ sh $SILK PATH/share/silk/etc/init.d/rwreceiver start

$ sh $SILK PATH/share/silk/etc/init.d/rwreceiver stop

The log messages that rwreceiver generates will resemble:

Mar 26 17:55:20 sst rwreceiver[9168]: /usr/sbin/rwreceiver --pidfile=...

Mar 26 17:55:20 sst rwreceiver[9168]: Forked child 9170. Parent exiting

Mar 26 17:55:32 sst rwreceiver[9170]: Shutting down due to SIGINT signal

Mar 26 17:55:32 sst rwreceiver[9170]: Shutting down

Mar 26 17:55:32 sst rwreceiver[9170]: Finished shutting down

Mar 26 17:55:32 sst rwreceiver[9170]: Stopped logging.

5.4.3.3 Enable automatic invocation of rwreceiver

Add the rwreceiver control script to the collection machine’s boot sequence if you want rwreceiver to start
when the machine boots. This process is similar to the one you followed for rwflowpack (see Section 5.1.2.3).

5.5 Packing machine, part 3

Now that you have created the rwreceiver.conf file on the storage machines, you can configure rwsender
on the packing machine. To recap, rwsender runs on the packing machine to transfer the incremental files
generated by rwflowpack to the rwreceiver and rwflowappend processes on the storage machines.

5.5.1 Customize the rwsender.conf configuration file

The SCRIPT CONFIG LOCATION/rwsender.conf file is used by the control script to gen-
erate the command line for rwsender. An example rwsender.conf file is available in the
$SILK PATH/share/silk/etc/ directory. These are the variables in the rwsender.conf file you need to
change:

SiLK-3.23.0 61

SiLK -3.23.0 SiLK Installation Handbook

INCOMING DIR. (--incoming-directory) This variable contains the full path to the directory
where rwflowpack writes the incremental files for transfer to rwflowappend. Set this to the
PACKER DEST value you chose in Section 5.1.1.

PROCESSING DIR. (--processing-directory) This variable contains the full path to the directory
where rwsender moves the incremental files it has accepted but not yet transferred. Set this to the
SENDER WORK value you chose in Section 5.1.1.

ERROR DIR. (--error-directory) This variable contains the full path to the directory where rwsender
moves files that rwreceiver does not accept. One reason rwreceiver may not accept a file is if it has
recently processed a file with that same name. Set this to the SENDER ERROR value you chose
in Section 5.1.1.

IDENTIFIER. (--identifier) This variable’s value is the name that rwsender sends when it connects
to the rwreceiver daemon. Enter the value you selected in Section 5.1.4.

MODE. (--mode) This determines whether rwsender runs as a server or a client. Verify that it says client.

RECEIVER SERVERS. (--server-address) This variable contains multiple lines, where each line lists
an rwreceiver server (host and port) to contact and the identifier that was specified when that
rwreceiver was invoked. Using the name or IP address of each storage machine you configured and
the IDENTIFIER andPORT values you specified when you configured rwreceiver (Section 5.4.3.1),
update the RECEIVER SERVERS variable to read

RECEIVER_SERVERS=‘cat <<’END_RECEIVERS’ # Do not modify this line

IDENTIFIER1 HOST :PORT1

IDENTIFIER2 HOST :PORT2

...

END_RECEIVERS

‘ #Do not modify this line or the previous line

If HOST is an IPv6 address, enclose the address in square brackets ([]).

TLS CA. (--tls-ca) When this variable is set, GnuTLS is used for communication between rwsender and
rwreceiver. If you wish to use GnuTLS, set this variable to the full path to the PEM encoded CA
certificate file, rootcert.pem, that you copied into the CONFIG FILE DIR in Section 5.1.5.

TLS PKCS12. (--tls-pkcs12) This variable lists the full path to the DER encoded PKCS#12 file. Set
this variable to the pkcs12.der that you copied into the CONFIG FILE DIR directory if you are
using GnuTLS.

You will also need to change some of the following; they are the same as those described for rwflowpack.conf
on page 49:

ENABLED. Whether this file has been configured.
CREATE DIRECTORIES. Whether to create directories.
LOG TYPE. The type of logging.
LOG DIR. The directory for log files.
PID DIR. The directory for the PID file.
USER. The user to run as.

Save the rwsender.conf file into the SCRIPT CONFIG LOCATION directory on the packing machine.

62 SiLK -3.23.0

SiLK Installation Handbook SiLK-3.23.0

5.5.2 Test the rwsender.conf settings

Check the settings in rwsender.conf by using the control script to start and stop rwsender:

$ sh $SILK PATH/share/silk/etc/init.d/rwsender start

$ sh $SILK PATH/share/silk/etc/init.d/rwsender stop

The log messages that rwsender generates will resemble:

Mar 26 18:04:50 sst rwsender[9363]: /usr/sbin/rwsender --pidfile=...

Mar 26 18:04:50 sst rwsender[9363]: Forked child 9364. Parent exiting

Mar 26 18:04:50 sst rwsender[9364]: Incoming file handling thread started.

Mar 26 18:05:06 sst rwsender[9364]: Shutting down due to SIGINT signal

Mar 26 18:05:06 sst rwsender[9364]: Shutting down

Mar 26 18:05:06 sst rwsender[9364]: Incoming file handling thread stopped.

Mar 26 18:05:06 sst rwsender[9364]: Finished shutting down

Mar 26 18:05:06 sst rwsender[9364]: Stopped logging.

5.5.3 Enable automatic invocation of rwsender

Add the rwsender control script to the collection machine’s boot sequence if you want rwsender to start
when the machine boots. This process is similar to the one you followed for rwflowpack (see Section 5.1.2.3).

5.6 Start the complete system

Once you have compiled and installed the software and configured the files used by the daemons, you are
almost ready to begin collecting data.

First, you should ensure that the connections between the rwsender and rwreceiver processes are correctly
configured. To test for a duplicate identifier entry, you should run all the rwsender and rwreceiver daemons
that communicate with one another at the same time.

Once you know that the file transfer is correctly configured, you can start the daemons to collect, convert,
and store the data.

As an initial test, you may want to enable a single path through the various daemons, and only start the
other daemons once you are confident that your settings are correct. The single path makes clean-up easier
if something needs to be changed. To use a single path, stop all but one of the rwreceiver processes on the
storage machines, and start a single flowcap process.

5.6.1 Start transfer between collection and packing machines

To start the connection between the packer and the collection machines, on each collection machine start
the rwsender daemon just as you did when testing its configuration in Section 5.2.3.2:

$ sh $SILK PATH/share/silk/etc/init.d/rwsender start

Now start the rwreceiver on the packing machine (cf. Section 5.3.2):

SiLK-3.23.0 63

SiLK-3.23.0 SiLK Installation Handbook

$ sh $SILK PATH/share/silk/etc/init.d/rwreceiver start

If all goes well, on each collection machine you will see log messages in the form:

Mar 26 18:25:26 sst rwsender[9550]: /usr/sbin/rwsender --pidfile=...

Mar 26 18:25:26 sst rwsender[9550]: Forked child 9552. Parent exiting

Mar 26 18:25:26 sst rwsender[9552]: Incoming file handling thread started.

Mar 26 18:25:39 sst rwsender[9552]: Received connection from 127.0.0.1

Mar 26 18:25:39 sst rwsender[9552]: Connected to remote rcv-packer1

The log messages on the packing machine will be similar to:

Mar 26 18:25:39 sst rwreceiver[9584]: /usr/sbin/rwreceiver --pidfile=...

Mar 26 18:25:39 sst rwreceiver[9584]: Forked child 9586. Parent exiting

Mar 26 18:25:39 sst rwreceiver[9586]: Connected to remote sensor-S1

Make certain that you see connections for each of the remote collection machines.

If the connections fail, make certain that the ports and machine names or IP addresses are all correct. To
produce more verbose logging messages to help you debug the problem, you can set the LOG LEVEL
variable in rwsender.conf and/or rwreceiver.conf to debug and restart the daemons.

If you want to test the transfer of files between the machines, you can place any file into the FLOW-
CAP DEST directory on a collection machine and it should be transferred to thePACKER INCOMING
directory on the packing machine. (Remember to remove this file before you start rwflowpack.)

5.6.2 Start transfer from packing to storage machines

To start the connection between the packer and the storage machines, on each storage machine start the
rwreceiver daemon just as you did when testing its configuration in Section 5.4.3.2:

$ sh $SILK PATH/share/silk/etc/init.d/rwreceiver start

Now start the rwsender on the packing machine (cf. Sections 5.5.2):

$ sh $SILK PATH/share/silk/etc/init.d/rwsender start

If everything is successful, the log messages on the packing machine will be similar to:

Mar 26 18:43:30 sst rwsender[9790]: /usr/sbin/rwsender --pidfile=...

Mar 26 18:43:30 sst rwsender[9790]: Forked child 9792. Parent exiting

Mar 26 18:43:30 sst rwsender[9792]: Incoming file handling thread started.

Mar 26 18:43:30 sst rwsender[9792]: Connected to remote append-sst

Make certain that you see connections for each of the remote storage machines.

On each storage machine you will see log messages in the form:

Mar 26 18:43:19 sst rwreceiver[9751]: /usr/sbin/rwreceiver --pidfile=...

Mar 26 18:43:19 sst rwreceiver[9751]: Forked child 9753. Parent exiting

Mar 26 18:43:30 sst rwreceiver[9753]: Received connection from 127.0.0.1

Mar 26 18:43:30 sst rwreceiver[9753]: Connected to remote send-packer1

64 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

If the connections fail, make certain that the ports and machine names or IP addresses are all correct. To
produce more verbose logging messages to help you debug the problem, you can set the LOG LEVEL
variable in rwsender.conf and/or rwreceiver.conf to debug and restart the daemons.

If you want to test the transfer of files between the machines, you can place any file into the
PACKER DEST directory on the packing machine and it should be transferred to the AP-
PEND INCOMING directory on all the storage machines. (Remember to remove this file before you
start rwflowappend.)

5.6.3 Start rwflowappend on each storage machine

Just as you did during testing (Section 5.4.2), start the rwflowappend daemon on each storage machine:

$ sh $SILK PATH/share/silk/etc/init.d/rwflowappend start

5.6.4 Start rwflowpack on the packing machine

Start the rwflowpack process on the packing machine:

$ sh $SILK PATH/share/silk/etc/init.d/rwflowpack start

5.6.5 Start flowcap on each collection machine

Finally, start the flowcap daemon on each collection machine:

$ sh $SILK PATH/share/silk/etc/init.d/flowcap start

5.6.6 Start flow generator

Follow the instructions in Section 8 to start the flow generator.

If flowcap will be listening for NetFlow traffic on UDP port(s), follow the instructions in Section 8.3 to
increase the maximum socket buffer size allowed by your kernel.

SiLK-3.23.0 65

SiLK-3.23.0 SiLK Installation Handbook

66 SiLK-3.23.0

6

Remote Data Collection

This section describes how to configure your site to use the packing configuration that supports remote data
collection. This configuration is depicted in Figure 1.5.

For this configuration, there is one machine called the packing machine and one or more additional machines
referred to as collection machines. Each collection machine runs the flowcap daemon to collect the flows and
store them in “flowcap files”. The rwsender daemon also runs on each collection machine, and it transfers
the files from the collection machine to an rwreceiver daemon running on the packing machine. The packing
machine runs the rwflowpack daemon to read these flowcap files and categorize and pack the flow records
they contain. The analysis tools are installed on the packing machine to read and analyze the flow records.

If this does not describe your packing configuration, refer to the list of possible configurations in Section 1.3.

The configuration in this section is similar to that in Section 5. This section will describe the configuration
of rwflowpack on the packing machine, and then refer you back to Section 5 to complete the installation.

6.1 Packing machine, part 1

The packing machine runs two daemons:

• rwreceiver receives flowcap files from the collection machines

• rwflowpack converts and categorizes the flows it reads from the flowcap files and stores the SiLK flows
in binary flat files.

Perform these steps on the packing machine to install the software and to configure the rwflowpack daemon.

6.1.1 Install the software

1. Choose locations and create the following directories if they do not exist:

SILK PATH. The root of the directory tree where SiLK will be installed. Pass this value to the
configure in the --prefix switch (cf. Section 2.2). If not specified, the default is /usr/local.

SILK DATA ROOTDIR. The root of the directory tree where the SiLK Flow files are permanently
stored. This should correspond to the --enable-data-rootdir value that was passed to the
configure script (see Section 2.2). If you do not pass that switch to configure, /data is the
name of the directory.

67

SiLK-3.23.0 SiLK Installation Handbook

PACKER INCOMING. The directory where rwreceiver deposits its files for processing by
rwflowpack.

SCRIPT CONFIG LOCATION. The directory containing configuration files used by daemons.
Often this is the /etc directory for system daemons; RedHat Linux uses /etc/sysconfig for
this value. The value SiLK uses is determined by the --sysconfdir switch to configure, and it
defaults to $SILK PATH/etc if the --sysconfdir switch was not given. When you ran configure,
the example sh-scripts described in the next section were modified to use this location.

CONFIG FILE DIR. An additional directory for configuration files; these files also may be used by
daemons. We recommend using $SILK PATH/etc/silk/ for this directory, though you may use
$SILK PATH/share/silk/ or the SCRIPT CONFIG LOCATION for this setting. There is
no part of SiLK that requires this to be in a particular location.

LOGGING DIR. The directory in which rwflowpack’s and rwreceiver’s process identifier (PID)
and log files are written.

2. Build and install the SiLK software as described in Sections 2 and 3. Be certain to customize silk.conf
and install it in the SILK DATA ROOTDIR directory.

3. Follow the instructions in Section 4.1 to create the Sensor Configuration file, and copy the file into the
CONFIG FILE DIR directory.

4. If you wish to use GnuTLS to secure the connection between the collection machine and the packing
machine, create the Certificate Authority file and PKCS#12 file as described in Section 5.1.5. Copy
these files into the CONFIG FILE DIR directory.

6.1.2 Customize the rwflowpack.conf configuration file

To provide easier control of the SiLK daemons in UNIX-like environments, example sh-scripts are provided.
The names of these scripts are the same as the daemon they control. The scripts are installed in the
$SILK PATH/share/silk/etc/init.d/ directory, but you should copy them to the standard location for
start-up scripts on your system (e.g., /etc/init.d/ on Linux and other SysV-type systems).

To generate the command line for the daemon named daemon , the control script checks settings in the
text file SCRIPT CONFIG LOCATION/daemon.conf. Before using a control script, you must create
a daemon.conf file and customize it for your environment.

For each daemon, an example configuration file is installed in the $SILK PATH/share/silk/etc/ directory.
You will need to copy the file to the SCRIPT CONFIG LOCATION directory and modify it as described
in this section. (The format of these configuration files may change between releases of SiLK. When upgrading
from a previous release, you should merge your previous settings into the new version of the configuration
file.)

You should not need to edit any of the control scripts; however, be aware the value of
SCRIPT CONFIG LOCATION they use was set when you ran configure.

Many of the variable names in rwflowpack.conf correspond to a command line switch on rwflowpack. By
referencing the rwflowpack manual page and the documentation for each variable in that file, you should
be able to determine how set each variable. This section highlights some of the settings. The switch that
the variable controls follows each name.

SENSOR CONFIG. (--sensor-configuration) This variable contains the full path to the Sensor Con-
figuration file you created in Section 4.1 and copied into the CONFIG FILE DIR directory above.

68 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

PACKING LOGIC. (--packing-logic) This variable may be blank or it may contain the name of (or the
path to) the plug-in that rwflowpack will load to get the “packing logic” it uses. The packing logic spec-
ifies how rwflowpack determines into which category each flow record is written (for example, whether
a record is incoming or outgoing). The packing logic uses values from the SENSOR CONFIG file.
You may also specify the packing logic plug-in with the packing-logic statement in the silk.conf

site configuration file. The PACKING LOGIC value must be empty if SiLK was configured without
support for the packing logic plug-in (cf. Section 2.3.8).

DATA ROOTDIR. (--root-directory) This variable specifies the root directory for packed SiLK data
files. Set this switch to the SILK DATA ROOTDIR value you chose above.

INCOMING DIR. (--incoming-directory) This variable specifies where rwflowpack looks for flowcap
files. Set this to the PACKER INCOMING value you chose above.

ARCHIVE DIR. (--archive-directory) If this variable is set, rwflowpack archives the flowcap files
after it has processed them. Unset this variable to disable archiving, or enter the full path to your
archive directory.

INPUT MODE. (--input-mode) This variable determines whether data is being read directly from the
network or whether rwflowpack is processing files generated by flowcap. Verify that it says fcfiles.

OUTPUT MODE. (--output-mode) This variable determines whether rwflowpack writes to the reposi-
tory itself or relies on rwflowappend to write to the repository. Verify that it says local-storage.

ENABLED. Set this variable to any non-empty value. It is used by the control script to determine whether
the administrator has completed the configuration.

CREATE DIRECTORIES. When this value is yes, the control script creates any directories that the
daemon requires but are nonexistent.

LOG TYPE. The daemons support writing their log messages to the syslog(3) facility or to local log files
rotated at midnight local time. Set this to syslog to use syslog, or to legacy to use local log files.

LOG DIR. When the LOG TYPE is legacy, the logging files are written to this directory. Set this
variable to the LOGGING DIR value you chose above. The /var/log directory is often used for log
files.

PID DIR. The daemons write their process identifier (PID) to a file in this directory. By default this
variable has the same value as LOG DIR, but you may wish to change it. On many systems, the
/var/run directory holds this information.

USER. The control script switches to this user (see su(1)) when starting the daemon. The default user is
root. Note that all of SiLK can be run as an ordinary user.

Save the rwflowpack.conf file into the SCRIPT CONFIG LOCATION directory that you created
above.

6.1.2.1 Test the rwflowpack.conf settings

Follow the instructions in Section 5.1.2.2 to test whether the settings in rwflowpack.conf are correct.

6.1.2.2 Enable automatic invocation of rwflowpack

If you wish, you can make rwflowpack start automatically when the packing machine boots by adding the
rwflowpack control script to its boot sequence. This process is described in Section 5.1.2.3.

SiLK-3.23.0 69

SiLK-3.23.0 SiLK Installation Handbook

6.1.3 Create an identifier for rwreceiver

rwreceiver runs on the packing machine to accept, from the collection machine(s), the files generated by
flowcap and sent by rwsender.

Each rwsender and rwreceiver is configured with an identifier of its own and the identifier(s) of the
rwreceiver(s) or rwsender(s) that may connect to it. The connection will not be established if the identifier
provided by other process is not recognized. In addition, every rwsender that communicates with the same
rwreceiver must have a unique identifier; likewise, every rwreceiver that communicates with the same
rwsender must have a unique identifier.

Create the identifier that the rwreceiver client on the packing machine sends when it contacts the rwsender
daemon running on each collection machine. The identifier should contain only printable, non-whitespace
characters; the following characters are illegal: colon (:), slash (/ and \), period (.), and comma (,).

The identifier should reflect that this is the rwreceiver process associated with the packer. These instruc-
tions use rcv-packer1.

You will use this identifier when you set up the rwsender daemon on each collection machine in Section 5.2.3,
and when you configure rwreceiver on the packing machine (Section 5.3).

6.2 Remote collection machine

Setting up each remote collection machine follows the procedure described in Section 5.2.

6.3 Packing machine, part 2

After you configure the remote collection machines, follow the instructions in Section 5.3 to configure
rwreceiver on the packing machine.

6.4 Start the complete system

Follow the instructions in Section 5.6—ignoring Sections 5.6.2 and 5.6.3—to start the complete collection
system.

70 SiLK-3.23.0

7

Remote SiLK Flow Storage

This section describes how to configure your site to use the packing configuration that supports remote SiLK
Flow storage. Figure 1.6 shows this configuration.

For this configuration, there is one machine called the packing machine and one or more additional machines
called storage machines. The packing machine runs the rwflowpack daemon to collect the flow records,
categorize them, and store them in small “incremental files”. The rwsender daemon also runs on the
packing machine, and it transfers the incremental files from the packing machine to an rwreceiver daemon
running on each storage machine. Each storage machine also runs the rwflowappend daemon to append
the incremental files to their final location in hourly files. In addition, each storage machine has the SiLK
analysis tools installed to read and analyze the data in the hourly files.

If this does not describe your packing configuration, refer to the list of possible configurations in Section 1.3.

The configuration in this section is similar to that in Section 5. This section will describe the configuration
of rwflowpack on the packing machine, and then refer you back to Section 5 to complete the installation.

7.1 Packing machine, part 1

The packing machine runs two daemons:

• rwflowpack collects flows from sensors, converts and categorizes the flows, and creates incremental
files.

• rwsender transfers the incremental files to the storage machines.

Perform these steps on the packing machine to install the software and to configure the rwflowpack daemon.

7.1.1 Install the software

1. Choose locations and create the following directories if they do not exist:

SILK PATH. The root of the directory tree where SiLK will be installed. Pass this value to the
configure in the --prefix switch (cf. Section 2.2). If not specified, the default is /usr/local.

PACKER DEST. The directory where rwflowpack writes the incremental files for delivery to
rwflowappend. rwsender polls this directory and accepts the files that it finds for delivery to the
rwreceiver processes on the storage machines.

71

SiLK-3.23.0 SiLK Installation Handbook

SENDER WORK. The directory where rwsender stores the files that it has accepted but not yet
sent to the intended rwreceiver(s).

SENDER ERROR. The directory where rwsender stores the files that are not accepted by
rwreceiver.

SCRIPT CONFIG LOCATION. The directory containing configuration files used by daemons.
Often this is the /etc directory for system daemons; RedHat Linux uses /etc/sysconfig for
this value. The value SiLK uses is determined by the --sysconfdir switch to configure, and it
defaults to $SILK PATH/etc if the --sysconfdir switch was not given. When you ran configure,
the example sh-scripts described in the next section were modified to use this location.

CONFIG FILE DIR. An additional directory for configuration files; these files also may be used by
daemons. We recommend using $SILK PATH/etc/silk/ for this directory, though you may use
$SILK PATH/share/silk/ or the SCRIPT CONFIG LOCATION for this setting. There is
no part of SiLK that requires this to be in a particular location.

LOGGING DIR. The directory in which rwflowpack’s and rwsender’s process identifier (PID) and
log files are written.

2. Build and install the SiLK software as described in Section 2. Since you will not be storing the SiLK
flows on the packing machine, you may ignore the --enable-data-rootdir switch on this machine.
For faster compilation and to save disk space, you can avoid building the analysis tools by passing the
--disable-analysis-tools switch to configure.

3. Follow the instructions in Section 3.1 to customize the silk.conf file, and save it to
$SILK PATH/share/silk/silk.conf so rwflowpack will locate it. You can ignore the remainder of
Section 3 on the packing machine.

4. Follow the instructions in Section 4.1 to create the Sensor Configuration file, and copy the file into the
CONFIG FILE DIR directory.

5. If you wish to use GnuTLS to secure the connection between the collection machine and the packing
machine, create the Certificate Authority file and PKCS#12 file as described in Section 5.1.5. Copy
these files into the CONFIG FILE DIR directory.

7.1.2 Customize the rwflowpack.conf configuration file

To provide easier control of the SiLK daemons in UNIX-like environments, example sh-scripts are provided.
The names of these scripts are the same as the daemon they control. The scripts are installed in the
$SILK PATH/share/silk/etc/init.d/ directory, but you should copy them to the standard location for
start-up scripts on your system (e.g., /etc/init.d/ on Linux and other SysV-type systems).

To generate the command line for the daemon named daemon , the control script checks settings in the
text file SCRIPT CONFIG LOCATION/daemon.conf. Before using a control script, you must create
a daemon.conf file and customize it for your environment.

For each daemon, an example configuration file is installed in the $SILK PATH/share/silk/etc/ directory.
You will need to copy the file to the SCRIPT CONFIG LOCATION directory and modify it as described
in this section. (The format of these configuration files may change between releases of SiLK. When upgrading
from a previous release, you should merge your previous settings into the new version of the configuration
file.)

You should not need to edit any of the control scripts; however, be aware the value of
SCRIPT CONFIG LOCATION they use was set when you ran configure.

Many of the variable names in rwflowpack.conf correspond to a command line switch on rwflowpack. By
referencing the rwflowpack manual page and the documentation for each variable in that file, you should

72 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

be able to determine how set each variable. This section highlights some of the settings. The switch that
the variable controls follows each name.

SENSOR CONFIG. (--sensor-configuration) This variable contains the full path to the Sensor Con-
figuration file you created in Section 4.1 and copied into the CONFIG FILE DIR directory above.

PACKING LOGIC. (--packing-logic) This variable may be blank or it may contain the name of (or the
path to) the plug-in that rwflowpack will load to get the “packing logic” it uses. The packing logic spec-
ifies how rwflowpack determines into which category each flow record is written (for example, whether
a record is incoming or outgoing). The packing logic uses values from the SENSOR CONFIG file.
You may also specify the packing logic plug-in with the packing-logic statement in the silk.conf

site configuration file. The PACKING LOGIC value must be empty if SiLK was configured without
support for the packing logic plug-in (cf. Section 2.3.8).

INCREMENTAL DIR. (--incremental-directory) This variable names the full path of the directory
where rwflowpack writes the incremental files for processing by rwsender. Set this variable to the
PACKER DEST value you chose above. (Note: This configuration is valid for SiLK-3.6.0 and later;
for older rwflowpacks, see that version’s Installation Handbook.)

INPUT MODE. (--input-mode) This variable determines whether data is being read directly from the
network or whether rwflowpack is processing files generated by flowcap. Verify that it says stream.

OUTPUT MODE. (--output-mode) This variable determines whether rwflowpack writes to the reposi-
tory itself or relies on rwflowappend to write to the repository. Verify that it says sending.

ENABLED. Set this variable to any non-empty value. It is used by the control script to determine whether
the administrator has completed the configuration.

CREATE DIRECTORIES. When this value is yes, the control script creates any directories that the
daemon requires but are nonexistent.

LOG TYPE. The daemons support writing their log messages to the syslog(3) facility or to local log files
rotated at midnight local time. Set this to syslog to use syslog, or to legacy to use local log files.

LOG DIR. When the LOG TYPE is legacy, the logging files are written to this directory. Set this
variable to the LOGGING DIR value you chose above. The /var/log directory is often used for log
files.

PID DIR. The daemons write their process identifier (PID) to a file in this directory. By default this
variable has the same value as LOG DIR, but you may wish to change it. On many systems, the
/var/run directory holds this information.

USER. The control script switches to this user (see su(1)) when starting the daemon. The default user is
root. Note that all of SiLK can be run as an ordinary user.

Save the rwflowpack.conf file into the SCRIPT CONFIG LOCATION directory that you created
above.

7.1.2.1 Test the rwflowpack.conf settings

Follow the instructions in Section 5.1.2.2 to test whether the settings in rwflowpack.conf are correct.

SiLK-3.23.0 73

SiLK-3.23.0 SiLK Installation Handbook

7.1.2.2 Enable automatic invocation of rwflowpack

If you wish, you can make rwflowpack start automatically when the packing machine boots by adding the
rwflowpack control script to its boot sequence. This process is described in Section 5.1.2.3.

7.1.3 Create an identifier for rwsender

rwsender runs on the packing machine to transfer the incremental files generated by rwflowpack to the
rwreceiver and rwflowappend processes on the storage machines.

Each rwsender and rwreceiver is configured with an identifier of its own and the identifier(s) of the
rwreceiver(s) or rwsender(s) that may connect to it. The connection will not be established if the identifier
provided by other process is not recognized. In addition, every rwsender that communicates with the same
rwreceiver must have a unique identifier; likewise, every rwreceiver that communicates with the same
rwsender must have a unique identifier.

Create the identifier that the rwsender client on the packing machine sends when it contacts the rwreceiver
daemon running on each storage machine. The identifier should contain only printable, non-whitespace
characters; the following characters are illegal: colon (:), slash (/ and \), period (.), and comma (,).

The identifier should reflect that this is the rwsender process associated with the packer. These instructions
suggest you use send-packer1.

You will use this identifier when you set up the rwreceiver daemon on each storage machine in Section 5.4.3,
and when you configure rwsender on the packing machine (Section 5.5).

7.2 Remote storage machine

Setting up each remote storage machine follows the procedure described in Section 5.4.

7.3 Packing machine, part 2

After you configure the remote storage machines, follow the instructions in Section 5.5 to configure rwsender
on the packing machine.

7.4 Start the complete system

Follow the instructions in Section 5.6—ignoring Sections 5.6.1 and 5.6.5—to start the complete collection
system.

74 SiLK-3.23.0

8

Flow Generator Configuration

Now that the daemons are installed and listening for data, it is time to provide them with data. This section
describes

• the switches to pass to the YAF software to process pcap data or data from an Endace DAG card

• the steps necessary to enable NetFlow v5 on a router

• a recommended kernel setting for machines that receive flow data

8.1 Using the YAF Flow Sensor

For SiLK to use the YAF Flow Collection software, you must install libfixbuf-1.7.0 (https://tools.netsa.cert.
org/fixbuf/) before you install SiLK, and SiLK’s configure script must notice that libfixbuf is installed.
See the libfixbuf documentation for instructions on installing it. If SiLK’s configure script does not find
your libfixbuf installation, refer to Section 2.3.7 in this handbook for assistance.

Once both YAF and SiLK are installed, getting them to communicate is straightforward.

You need to create an IPFIX probe in your Sensor Configuration file so that rwflowpack or flowcap knows to
listen for IPFIX flows. Section 4.1 and the sensor.conf(5) manual page describe the Sensor Configuration
syntax. The examples in this section assume the collection daemon (rwflowpack or flowcap) is running on
the machine whose IP is 10.1.18.2 and the daemon and YAF are communicating on port 18002.

In the sensor.conf file, the required probe block, where the probe is named Bravo, is:

probe Bravo ipfix

listen-on-port 18002

protocol tcp

end probe

This section gives instructions on invoking YAF. In all cases, note the use of the --silk option to YAF; this
switch causes YAF to break the IPFIX specification but provides additional analysis capabilities in SiLK.
See the yaf(1) manual page for details.

To perform live capture on an interface (e.g., eth0), use the following command. Note the use of sudo; the
YAF software will drop its privileges and become user after binding to the interface.

75

https://tools.netsa.cert.org/fixbuf/
https://tools.netsa.cert.org/fixbuf/

SiLK-3.23.0 SiLK Installation Handbook

sudo yaf --silk --ipfix=tcp --live --become-user user \

--in=eth0 --out=10.1.18.2 --ipfix-port=18002

When YAF is configured with the --with-dag option, it can accept packets from an Endace DAG card (e.g.,
dag0). This invocation is similar to the previous one:

sudo yaf --silk --ipfix=tcp --dag --become-user user \

--in=dag0 --out=10.1.18.2 --ipfix-port=18002

To have YAF process a packet capture (pcap) dump file (such as that produced by tcpdump(1)), run:

yaf --silk --ipfix=tcp \

--in=pcap-file --out=10.1.18.2 --ipfix-port=18002

If you have several packet capture files to process, you can pass a list of files to YAF and specify --caplist.
Since YAF will treat the files as a single stream, you need to make certain the file names occur in ascending
time order. Note that the files cannot be compressed.

yaf --silk --ipfix=tcp --caplist \

--in=file-list.txt --out=10.1.18.2 --ipfix-port=18002

To have YAF process a directory of packet capture files, where the files are named such that they are
naturally listed in ascending time order, use:

ls | yaf --silk --ipfix=tcp --caplist \

--in=- --out=10.1.18.2 --ipfix-port=18002

See the YAF documentation for additional switches, such as those that control logging.

8.2 Configuring a router

You will need to perform these steps for each router you wish to instrument. The examples in this section
assume the collection daemon (rwflowpack or flowcap) is running on the machine whose IP is 10.1.18.1,
and that the daemon and router is communicating on port 18001.

In the sensor.conf file, the required probe block, where the probe is named Alpha, is:

probe Alpha netflow-v5

listen-on-port 18001

protocol udp

end probe

The timestamps on the NetFlow records will be based on the timestamps received from the router, and we
suggest using ntp to minimize drift in the router’s clock. To synchronize the router’s time with that from
the time server running at ip-address, use the Cisco IOS command

ntp server ip-address

The router needs to know where to send the NetFlow PDUs: the host and port on which rwflowpack or
flowcap is listening. (If you are configuring multiple routers, you’ll need to use a unique ip-address:port
pair for each router.) To set this information on the router, give the command

76 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

ip flow-export 10.1.18.1 18001

To make certain the router exports NetFlow version 5 records, which the SiLK tools require, issue

ip flow-export version 5

SiLK assumes no flow records are longer than 60 minutes—this means a long TCP session (such as an
interactive ssh session) will be broken across multiple flow records. To set the active timeout on your Cisco
router (30 minutes is the default for Cisco), use the IOS command:

ip flow-cache active-timeout 30

When the router is rebooted, it can reassign the SNMP interface numbers. This can create a problem, as the
SNMP interface that was facing the Internet could now be facing your organization, resulting in the incoming
and outgoing flows being reversed. To prevent this problem, tell the router to use persistent settings for the
interface numbers. The easiest solution is to enable global persistence with the IOS command

snmp-server ifindex persist

and then save the configuration with the EXEC mode command

copy running-config startup-config

See the following link for more information on IfIndex persistence, including instructions on setting per-
sistence on an interface-by-interface basis: http://www.cisco.com/en/US/docs/ios/12 1t/12 1t5/feature/
guide/dt5ifidx.html.

Finally, to enable NetFlow, issue the IOS command

ip route-cache flow

8.3 Configure the machine(s) receiving flows

Network traffic tends to be “bursty”: when you make an HTTP request, several servers may respond feeding
you pages, images, and ads. To avoid losing records, it is important for each program receiving flow data to
have a large socket buffer. The SiLK software will attempt to set the socket buffer size to the largest size
the kernel will allow, up to a maximum of 8MB. To ensure that the programs can use the full 8MB buffer,
we recommend increasing the maximum socket buffer size on each machine that has incoming flows. When
using NetFlow, the machine running rwflowpack or flowcap and receiving the NetFlow PDUs should have
its socket buffer adjusted.

To increase the maximum allowable socket buffer size on a running Linux system:

echo 8388608 > /proc/sys/net/core/rmem_max

On a running Solaris box, issue:

ndd -set /dev/udp udp_max_buf 8388608

Those lines may be added to the system’s start-up sequence (e.g., /etc/rc2.d/S99ndd) to make the change
persistent across reboots.

SiLK-3.23.0 77

http://www.cisco.com/en/US/docs/ios/12_1t/12_1t5/feature/guide/dt5ifidx.html
http://www.cisco.com/en/US/docs/ios/12_1t/12_1t5/feature/guide/dt5ifidx.html

SiLK-3.23.0 SiLK Installation Handbook

78 SiLK-3.23.0

Appendix A

Packing Logic Overview

This section describes how a flow record read from an external source is processed to become SiLK Flow
record. For information on installing SiLK’s flow collection and storage tools, refer to Section 4 or 5.

The most simple SiLK configuration is the Single machine configuration, described in Section 1.3.1. In this
configuration, the rwflowpack daemon collects NetFlow v5 flow records, NetFlow v9 flow records, or flow
records that follow the Internet Protocol Flow Information eXport (IPFIX) standard. rwflowpack converts
the information from these external flow formats to the SiLK format, and some information from the source
record is dropped to keep each individual SiLK record small. Next, rwflowpack categorizes the SiLK flow
records to determine where on disk they will be stored. Finally, rwflowpack writes the SiLK records into
binary flat files where each file represents a specific category, sensor, and hour. This entire process is referred
to as packing. The term packing logic refers to the decision process that rwflowpack uses to categorize a
flow.

(In the more complex configurations, it may be the flowcap daemon that collects the flow records in the
external formats and converts them to a SiLK format. The rwflowappend deamon may be responsible for
writing the records into their final location in the data repository of hourly files. These differences are largely
immaterial for this section, which describes the categorization process.)

A.1 NetFlow primer

A router will create a NetFlow record for IP packets that traverse the router within a certain time window
and have identical IP protocols, identical source and destination IP addresses, and identical source and
destination ports. The NetFlow record contains

• information taken from the IP packet headers for the traffic the flow represents

– IP protocol

– source and destination IP addresses

– source and destination ports for TCP and UDP

– TCP flag information

• sums of packets and bytes (octets) for the packets in the flow

• the times when the first and last packets of the flow were seen

79

SiLK-3.23.0 SiLK Installation Handbook

• routing information (the next-hop IP and the input and output SNMP interfaces on which the packets
entered and left the router).

NetFlow data is strictly unidirectional: a TCP conversation passing through a router causes the router to
generate two sets of flow records—one for each side of the conversation.

A.2 IPFIX introduction

Over time, NetFlow became a de facto standard for flow data. The Internet Protocol Flow Information eX-
port (IPFIX) working group (http://www.ietf.org/dyn/wg/charter/ipfix-charter.html) grew out of a desire
to standardize the NetFlow format. SiLK handles IPFIX records in much the same way that it handles
NetFlow records. (Support for IPFIX requires that SiLK is built with libfixbuf support.)

A.3 Categorizing the flow

rwflowpack categorizes each flow to determine where to store it, and the category also determines the format
of the file that contains the flow record. This categorization is handled by a plug-in that rwflowpack loads
at run-time. The best place to specify the name of this plug-in is in the packing-logic statement in the
silk.conf site configuration file. You may also specify the location of the plug-in with the --packing-logic
switch to rwflowpack.

This section describes the categorization that the twoway site provides. The packing logic for other sites
will be different.

A.3.1 Incoming vs. outgoing traffic

Since NetFlow data is unidirectional, the first part of categorization determines whether the flow entered or
left the monitored network. There are three ways to do this:

1. Explicitly set the source and destination networks for all flows. For example, if you are monitoring
a network link that only sees incoming traffic, you could specify that all flows are coming from the
external network and going to the internal network.

2. Determine whether the source and destination IPs on a flow are internal or external to the monitored
network; categorizing a flow as incoming (source is external; destination is internal) or outgoing is
straightforward. Flows could also be categorized as internal to internal (one may see these on a router
that acts both as a gateway and as a part of the intranet core) or as external to external.

3. Examine the SNMP (Simple Network Management Protocol) interface indexes that are stored on the
flow itself and indicate how the flow was handled by the router. The difficulty with this approach is that
you must know which SNMP indexes on the router are connected to the external network and which
are connected internally to the monitored network. (This can be institutionally difficult if the group
that controls the router [e.g., Network Operations] is separate from the group that is monitoring the
network for security reasons.) When lists of both external and internal SNMP interfaces are provided,
flows can be categorized just as they are in the IP-based case: Flows entering the router from an
external SNMP interface and leaving the router on an internal SNMP interface are incoming, etc.

The IP-based approach works well for a small, well-contained IP space, but it can be unwieldy if the IP space
of the monitored network is large and discontinuous or if there is no well-defined IP space solely contained in

80 SiLK-3.23.0

http://www.ietf.org/dyn/wg/charter/ipfix-charter.html

SiLK Installation Handbook SiLK-3.23.0

the monitored network. However, the IP-based approach is appropriate when you have data that does not
have SNMP information, such as IPFIX flows or when you are generating flow records from a packet capture
(pcap) file (e.g., from the output of tcpdump). Although the initial configuration of the SNMP approach is
more difficult, this method has the advantage of being computationally faster than the IP-based method,
and it ensures that the flows reflect the way the router is actually moving the traffic into and out of your
network, not the way you think it should be routing the traffic.

Directions for using flow data and lists of IPs to determine the external SNMP interfaces are presented in
Appendix B.

The source-network and destination-network commands in the Sensor Configuration file (Section 4.1)
are used when you wish to explicitly set the direction of the flows. The value to these commands is either
external or internal.

To have rwflowpack use the IP-based approach, specify the monitored network’s IP space in the
internal-ipblock command of each sensor, and set the external-ipblock to the keyword remainder.

To use the SNMP approach, set the external-interfaces to the list of SNMP interfaces that face outside
the monitored network, and either do not specify an internal-interfaces command or set it to the list of
SNMP interfaces that connect into the monitored network. (If the internal-interfaces is not provided,
it is treated as if it had the value remainder.) Alternatively, you can specify the internal-interfaces as
a list and explicitly set the external-interfaces to the keyword remainder.

A.3.2 Routed vs. non-routed traffic

An additional part of categorizing a flow is to determine what the router did with the packets that the flow
represents. A flow record does not have to represent packets that entered or left the monitored network
(which we call routed packets); instead, a record may represent packets that did not leave the router; these
packets are considered not-routed or null. This behavior occurs when

1. the packets are a routing protocol message (e.g., BGP) meant for the router itself

2. the packets violated the router’s access control list (ACL)

To determine if a flow was not-routed, the output SNMP index of the flow is compared to the null-interface
value. If there is a match, the flow is categorized as not-routed.

Note: Since SiLK-1.0.0, the null-interface is longer set by default. You must explicitly set it to

categorize flows as non-routed. Cisco routers use 0 as the output SNMP index for a non-routed flow.

A.3.3 Routed-web traffic

Since web traffic (or traffic that masquerades as web traffic) makes up such a large percentage of flows,
additional packing is performed on these flows. The fixed-protocol (TCP) and limited number of web-server-
side ports (80 (http), 443 (https), or 8080 (http-alt)) allow routed-web traffic to be packed in a smaller
record. Although the savings is only a couple of bytes per record, these can add up to substantial savings
over the course of a day. There is certainly no guarantee that routed-web traffic is entirely HTTP-based or
that there is no HTTP-traffic in the remaining routed categories; the web/non-web split is a simple heuristic
that gets it right most of the time.

SiLK-3.23.0 81

SiLK-3.23.0 SiLK Installation Handbook

A.3.4 Routed-ICMP traffic

Similar to the separation for web traffic, an additional split that can occur is to store the routed ICMP
traffic separately from other traffic in a routed-icmp category. Currently, there are no file formats that
take advantage of the possible space savings.

A.3.5 Categorization summary

The categories (which may also be called flowtypes or types) for the twoway site are:

ext2ext Flows that are seen at the sensor but never enter the monitored network. These are flows where the
source and destination IP addresses are both outside the monitored network, or where the incoming
and outgoing SNMP interfaces both face outside the monitored network.

innull Incoming flows that are blocked or are for the router. These are non-routed flows that entered the
router through an SNMP interface that connects outside the monitored network.

in Incoming flows that do not match the following two categories. These are routed records where the source
IP is external and the destination IP is internal, or where the incoming SNMP interface faces outside
the monitored network and the outgoing SNMP interface faces into the network.

inweb Incoming flows that are probably web traffic (80/tcp, 443/tcp, or 8080/tcp); i.e., routed-web traffic
that enters the network.

inicmp Similar to in where the protocol is ICMP.

int2int Flows that stay inside the monitored network. These are flows where the source and destination IP
addresses are both inside the monitored network, or where the incoming and outgoing SNMP interfaces
are both connected into the monitored network.

outnull Outgoing flows that are blocked or are for the router. These are non-routed flows that entered the
router an SNMP interface that connects into the monitored network.

out Outgoing flows that do not match the following two categories. These are routed records where the
source IP is internal and the destination IP is external, or where the incoming SNMP interface connects
into the monitored network, and the outgoing SNMP interface faces outside the network.

outweb Outgoing flows that are probably web traffic.

outicmp Similar to out where the protocol is ICMP.

other Flows that do not match any other rule. One source of other flows is traffic on the router using an
SNMP interface that is not specified in the internal-interfaces or external-interfaces lists.

The packing logic in use prior to SiLK-0.11.0 is called generic, and it is available in the
$SILK PATH/lib/silk/packlogic-generic.so plug-in. It is similar to the twoway site, but it does not
provide the ext2ext, int2int, or other categories, and the incoming versus outgoing test is slightly different.
In the generic packing logic, rwflowpack tests to see if a flow is incoming; that is, whether the source IP
is outside the monitored network or the incoming SNMP interface faces outside the network. Any flow that
does not match the rules for an incoming flow is considered an outgoing flow.

82 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

A.4 Data Storage Hierarchy

Once each SiLK Flow record is categorized, it is stored on disk in a directory tree rooted at a direc-
tory called the SILK DATA ROOTDIR. When you run configure, you specify a default value of the
SILK DATA ROOTDIR (see Section 2.2) which is compiled into the rwfilter program. The default can
be modified at run-time with the --data-rootdir switch or by setting the SILK DATA ROOTDIR environment
variable.

The layout of the tree under SILK DATA ROOTDIR can be customized by editing the path-
format value in the silk.conf file. In the default layout, the directories directly under
SILK DATA ROOTDIR correspond to the SiLK Flow record categories. An example subdirectory would
be $SILK DATA ROOTDIR/inweb, which would contain the SiLK Flow records for incoming routed-web traffic.
Within each of these directories are date directories, in the form YYYY /MM /DD . For example, output web
files for October 4th, 2003 are recorded in:

$SILK_DATA_ROOTDIR/outweb/2003/10/04/

Each date directory contains the binary SiLK Flow files, one per hour per sensor per category
(flowtype). The file names include the date and type information, and are written in the form:
flowType -sensorName YYYYMMDD.HH. Note that the date and hour are based on UTC time, not local time.

The flowType corresponds to how the flow records were categorized (e.g., iw denotes a file containing incoming
routed-web records). The sensorName identifies the sensor where the flow was collected.

SiLK-3.23.0 83

SiLK-3.23.0 SiLK Installation Handbook

84 SiLK-3.23.0

Appendix B

Determining External Interfaces

As explained in Appendix A, rwflowpack can determine whether flows represent inbound or outbound traffic
by examining either the IP addresses in the flows or their SNMP interface values. This Appendix explains
how to discover the interfaces values by collecting flow data and examining it with SiLK. You may ignore
this appendix if you are using the IP address approach, or if you have another method to determine the
SNMP interface numbers your router is using.

To pack flows by the SNMP interface values, rwflowpack needs to know which of the router’s interfaces
are the external interfaces (i.e., facing outside the monitored network). (For a border router, these are the
interfaces that connect to the ISP.) One way to determine these interfaces is to use the SiLK tools to collect
data and compare the source and destination IP addresses with the IP addresses of the monitored network.
The approach outlined below will not work if the monitored network does not have a well-defined set of
exclusive IP addresses.

Begin by creating an IPset of the monitored network’s address space. To do this, list the network’s CIDR
blocks in a text file, one CIDR address per line, and save this file as myips.txt. If your address space is
192.168.0.0/16, you could run

$ echo "192.168.0.0/16" > myips.txt

To convert the text listing to a binary IPset file, issue the command

$ rwsetbuild myips.txt myips.set

The file myips.set is a binary representation of your address space. You can use the rwsetcat command
to list the contents of the file, though beware that the default output is one address (/32) per line, so there
can be a lot of output. You can use the --cidr switch to print the output in CIDR notation. Supplying the
--print-statistics or --network-structure switch should also produce some useful output for sanity
checking the IPset file. For example, if your network is 192.168.0.0/16, you will see:

$ rwsetcat --print-statistics myips.set

Network Summary

minimumIP = 192.168.0.0

maximumIP = 192.168.255.255

65536 hosts (/32s), 0.001526% of 2^32

1 occupied /8, 0.390625% of 2^8

1 occupied /16, 0.001526% of 2^16

85

SiLK-3.23.0 SiLK Installation Handbook

256 occupied /24s, 0.001526% of 2^24

2048 occupied /27s, 0.001526% of 2^27

$ rwsetcat --network-structure=BTS myips.set

192.168.0.0/16 | 65536 hosts in 256 /24s and 2048 /27s

TOTAL | 65536 hosts in 1 /8, 1 /16, 256 /24s, and 2048 /27s

In order to identify which interfaces are external, configure rwflowpack to categorize all data as incoming
null, then determine what subset of records actually represent incoming traffic by looking at the source and
destination IP addresses. Do this by configuring the Sensor Configuration file (see Section 4.1) so that the
flows come from the external network and go to the null network.

For example, if your site as an Alpha sensor, you would create the following sensor.conf file to collect
NetFlow v5 traffic on port 8092 :

probe Alpha netflow-v5

listen-on-port 8092

protocol udp

end probe

sensor Alpha

netflow-v5-probes Alpha

source-network external

destination-network null

end sensor

You need to tell rwflowpack to include the SNMP interface numbers in the files it creates. Add the option
--pack-interfaces to the invocation of rwflowpack by modifying the rwflowpack.conf configuration file.
You may also want to decrease the --flush-timeout, which affects the amount of data rwflowpack stores
in RAM before writing the records to disk. The default is two minutes, but since you are waiting for the
data, a value of 30 seconds is reasonable.

Near the bottom of the rwflowpack.conf file is the line:

EXTRA_OPTIONS=

Modify it to read:

EXTRA_OPTIONS=--pack-interfaces --flush-timeout=30

If you are running multiple instances of rwflowpack, repeat the above steps for every router (sensor) on
your network, since each router will have its own SNMP interface values.

Start the rwflowpack control script and allow rwflowpack to collect data.

$ rwflowpack start

You should see data appearing in the files $SILK DATA ROOTDIR/innull/*/*/*/*. For example, traffic cap-
tured at 2:14 pm EDT on October 4, 2003, from sensor Alpha will be in
$SILK DATA ROOTDIR/innull/2003/10/04/innull-Alpha 20031004.18. If data does not appear, do some-
thing to generate traffic, such as browsing the web. If you still do not see data, make certain you have
correctly configured your router(s) to generate NetFlow v5 records and that the host and port to which the
router is sending NetFlow matches the host and port where rwflowpack is listening.

86 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

If you see the data files but they are empty, be patient. rwflowpack uses buffered input/output, which may
hold records in memory. The data are flushed once the flush-timeout is reached, and at shutdown.

All the collected flows are in the innull data files. To find incoming traffic, you want to select all records for
which the source IP is outside the monitored network’s address space and the destination IP is inside the
address space. To select records, use the rwfilter command:

$ rwfilter --not-sipset=myips.set --dipset=myips.set \

--type=all --pass=stdout \

| rwuniq --fields=12-14

The --not-sipset and --dipset switches do the IP address filtering. Use the --type switch to select the
all the data files (by default rwfilter looks only at the files for incoming routed data.) The --pass-output
switch will direct the records that pass these IP filters to the standard output, which you pipe into another
tool. For the records that pass the filter, you want to know which SNMP interfaces the records passed
through in the border router(s). To get this information, run the rwuniq command, and select the fields
containing the sensor and input and output SNMP indexes as the key.

Running the above command will produce something similar to:

sensor| in| out| Records|

Alpha| 1| 2| 25139|

Alpha| 1| 4| 8|

Alpha| 1| 3| 80|

Bravo| 8| 3| 4309|

where Alpha and Bravo are the names you assigned to the sensors (routers). From this output, you can see
that SNMP interface 1 on the router named Alpha is the incoming interface, and interface 8 on Bravo is
incoming. Note that a router connected to multiple ISPs will have multiple input interfaces.

Use the control script to stop the current rwflowpack.

You probably want to remove the data files you just created. This is the brute force method which will
remove all the data files:

$ rwflowpack stop

$ find $SILK_DATA_ROOTDIR/innull -type f -print | xargs rm

In the Sensor Configuration file, set the external-interface and internal-interface attributes to the
appropriate value(s). You can remove the --pack-interfaces and --flush-timeout switches from the
EXTRA OPTIONS line in the rwflowpack.conf file.

SiLK-3.23.0 87

SiLK-3.23.0 SiLK Installation Handbook

88 SiLK-3.23.0

Appendix C

Creating GnuTLS Certificates

When available, rwsender and rwreceiver can use GnuTLS (the GNU Transport Layer Security Library,
http://www.gnutls.org/) to encrypt and authenticate the communication between them. To use this fea-
ture, the rwsender and rwreceiver each need access to the PEM (Privacy Enhanced Mail) encoded root
Certificate Authority (CA) file and to a program specific certificate and key, which can be either a DER
(Distinguished Encoding Rules) encoded PKCS#12 file or a PEM encoded key file and a PEM encoded
certificate file.

The communication between rwsender and rwreceiver will be established as long as the certificate chains
for the PKCS#12 file or the key and certificate files resolve to the same CA. You may create a single
program-specific key and certificate and use that on for all instances of rwsender and rwreceiver, or create
a separate certificate/key pair for each instance of these programs.

We recommend creating a local certificate authority (CA) file, and creating program-specific certificates
signed by that local CA. The local CA and program-specific certificates are copied onto the machines where
rwsender and rwreceiver are running. The local CA acts as a shared secret: it is on both machines and it
is used to verify the asymmetric keys between the rwsender and rwreceiver certificates.

If someone gains access to the local CA, that person would not be able to decipher the conversation between
rwsender and rwreceiver, since the conversation is encrypted with a private key that was negotiated during
the initialization of the TLS session.

However, anyone with access to the CA would be able to set up a new session with an rwsender (to download
files) or an rwreceiver (to inject spoofed files). The GnuTLS certificates should be one part of your security;
additional measures (such as firewall rules) should be enabled to mitigate these issues.

GnuTLS provides a tool called certtool to create the files, as described below. rwsender and rwreceiver

also support using PKCS#12 files created with openssl.

C.1 Creating the Certificate Authority

To create a self-signed CA certificate, rootcert.pem, and its private key, rootkey.pem, fill in the following
template with the appropriate information and save it to roottemp.cfg. You may also forgo the template,
in which case certtool will prompt you for the information interactively.

X.509 Certificate options

#

89

http://www.gnutls.org/

SiLK -3.23.0 SiLK Installation Handbook

DN options

The organization of the subject.

organization = "ORGANIZATION "

The organizational unit of the subject.

unit = "ORGANIZATIONAL_UNIT "

The locality of the subject.

locality =

The state of the certificate owner, e.g., Pennsylvania

state = "STATE "

The country of the subject. Two letter code, e.g., US

country = COUNTRY_CODE

The common name of the certificate owner.

cn = "COMMON_NAME "

The serial number of the certificate, e.g., 001

serial = 001

In how many days, counting from today, this certificate will expire.

expiration_days = 366

Whether this is a CA certificate or not

ca

Whether this certificate will be used to sign data (needed

in TLS DHE ciphersuites).

signing_key

Whether this key will be used to sign other certificates.

cert_signing_key

Once you have filled in the above template, the following commands use it to create the CA key and
certificate. (Remove the --template switch and its parameter if you are not using the template).

$ certtool --generate-privkey --outfile rootkey.pem \

--template roottemp.cfg

$ certtool --generate-self-signed --load-privkey rootkey.pem \

--outfile rootcert.pem --template roottemp.cfg

C.2 Creating a program-specific certificate/key pair

To create a program-specific certificate, cert.pem, and key, key.pem, you may fill in the following template
and save it as progtemp.cfg, or have certtool prompt you for the information interactively.

X.509 Certificate options

#

90 SiLK -3.23.0

SiLK Installation Handbook SiLK -3.23.0

DN options

The organization of the subject.

organization = "ORGANIZATION "

The organizational unit of the subject.

unit = "ORGANIZATIONAL_UNIT "

The locality of the subject.

locality =

The state of the certificate owner, e.g., Pennsylvania

state = "STATE "

The country of the subject. Two letter code, e.g., US

country = COUNTRY_CODE

The common name of the certificate owner.

cn = "COMMON_NAME "

The serial number of the certificate, a number, e.g., 002

serial = 002

In how many days, counting from today, this certificate will expire.

expiration_days = 366

Whether this certificate will be used to sign data (needed

in TLS DHE ciphersuites).

signing_key

Whether this certificate will be used to encrypt data (needed

in TLS RSA ciphersuites). Note that it is preferred to use different

keys for encryption and signing.

encryption_key

Use the following commands to create a certificate from the template and the root CA you created above:

$ certtool --generate-privkey --outfile key.pem \

--template certtemp.cfg

$ certtool --generate-certificate --load-privkey key.pem \

--outfile cert.pem --load-ca-certificate rootcert.pem \

--load-ca-privkey rootkey.pem --template certtemp.cfg

C.3 Creating a PKCS#12 file

You may use the cert.pem and key.pem files you created above, or you may convert these to a single
PKCS#12 file. The advantages of PKCS#12 is that it is a single file, it may be created with openssl, and
it may be password protected.

The following certtool command converts the cert.pem and key.pem files from the previous section to a
PKCS#12 file named pkcs12.der:

SiLK -3.23.0 91

SiLK-3.23.0 SiLK Installation Handbook

$ certtool --load-certificate cert.pem --load-privkey key.pem \

--to-p12 --p12-name=NAME --outder --outfile pkcs12.der

where NAME is the name for the primary certificate and private key in the PKCS#12 file. To use an empty
password with the PKCS#12 file, specify --empty-password.

If you choose to password protect the file, you must specify the password in the RWSENDER TLS PASSWORD

environment variable prior to starting rwsender, and similarly RWRECEIVER TLS PASSWORD for rwreceiver.

92 SiLK-3.23.0

Appendix D

License

SiLK 3.22.0

Copyright 2023 Carnegie Mellon University.

GNU GPL 2.0

June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software–to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want its

93

SiLK-3.23.0 SiLK Installation Handbook

recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program pro-
prietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The ”Program”, below, refers to
any such program or work, and a ”work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions, and telling the user how to
view a copy of this License. (Exception: if the Program itself is interactive but does not normally print such
an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by

94 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable copy of
the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code.
(This alternative is allowed only for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associ-
ated interface definition files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to

SiLK-3.23.0 95

SiLK-3.23.0 SiLK Installation Handbook

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

96 SiLK-3.23.0

SiLK Installation Handbook SiLK-3.23.0

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

One line to give the program’s name and a brief idea of what it does.

Copyright (C) ¡year¿ ¡name of author¿

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY NO
WARRANTY; for details type ‘show w’. This is free software, and you are welcome to redistribute it under
certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than ‘show w’ and ‘show c’; they
could even be mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which makes passes
at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License.

SiLK 3.22.0 includes and/or can make use of certain third party software (”Third Party Software”). The
Third Party Software that is used by SiLK 3.22.0 is dependent upon your system configuration, but typically
includes the software identified in this license.txt file, and/or described in the documentation and/or read me
file. By using SiLK 3.22.0, You agree to comply with any and all relevant Third Party Software terms and
conditions contained in any such Third Party Software or separate license file distributed with such Third
Party Software. The parties who own the Third Party Software (”Third Party Licensors”) are intended third
party beneficiaries to this License with respect to the terms applicable to their Third Party Software. Third

SiLK-3.23.0 97

SiLK-3.23.0 SiLK Installation Handbook

Party Software licenses only apply to the Third Party Software and not any other portion of SiLK 3.22.0 or
SiLK 3.22.0 as a whole.

This material is based upon work funded and supported by the Department of Homeland Security under Con-
tract No. FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center sponsored by the United States Department
of Defense.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be
construed as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING IN-
STITUTE MATERIAL IS FURNISHED ON AN ”AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MAT-
TER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MER-
CHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROMUSE OF THEMATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited dis-
tribution. Please see Copyright notice for non-US Government use and distribution.

GOVERNMENT PURPOSE RIGHTS – Software and Software Documentation

Contract No.: FA8702-15-D-0002 Contractor Name: Carnegie Mellon University Contractor Address: 4500
Fifth Avenue, Pittsburgh, PA 15213

The Government’s rights to use, modify, reproduce, release, perform, display, or disclose this software are
restricted by paragraph (b)(2) of the Rights in Noncommercial Computer Software and Noncommercial
Computer Software Documentation clause contained in the above identified contract. No restrictions apply
after the expiration date shown above. Any reproduction of the software or portions thereof marked with
this legend must also reproduce the markings.

Carnegie Mellon® and CERT® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon
University.

DM23-0973

98 SiLK-3.23.0

	1 Introduction
	1.1 Prerequisites
	1.2 Upgrading SiLK
	1.3 SiLK system configurations
	1.3.1 Single machine configuration
	1.3.2 Remote data collection and remote flow storage
	1.3.3 Remote data collection with local storage
	1.3.4 Local collection and remote SiLK flow storage
	1.3.5 Analysis only

	1.4 Handbook summary
	1.5 Additional resources

	2 Building SiLK from Source Code
	2.1 Unpack the source code
	2.2 Choose installation directories
	2.3 Optional features
	2.3.1 Supporting PySiLK: SiLK in Python
	2.3.2 Supporting IPv6
	2.3.3 Choosing the IPset file format
	2.3.4 Using automatic file compression
	2.3.5 Specifying the location of compression libraries
	2.3.6 Building support for MaxMind GeoIP2 binary database files
	2.3.7 Collecting IPFIX, NetFlow v9, or sFlow records
	2.3.8 Disabling run-time packing logic
	2.3.9 Controlling what applications are built and installed
	2.3.10 Building static libraries
	2.3.11 Statically-linked applications
	2.3.12 Supporting encrypted communication using GnuTLS
	2.3.13 Using your local timezone
	2.3.14 Supporting conversion of packet capture tcpdump data
	2.3.15 Supporting asynchronous DNS
	2.3.16 Supporting the IP Association library (libipa)
	2.3.17 Supporting development and debugging

	2.4 Configure SiLK
	2.5 Build and install
	2.6 Create RPMs

	3 Analysis Tool Customization
	3.1 Create the site configuration file, silk.conf
	3.2 Specify local address space
	3.3 Country Code mapping file installation

	4 Single Machine Configuration
	4.1 Create the sensor configuration file, sensor.conf
	4.1.1 Probe Block
	4.1.2 Group Block
	4.1.3 Sensor Block
	4.1.4 Summary

	4.2 Install the software
	4.3 Customize the rwflowpack.conf configuration file
	4.4 Test the settings
	4.5 Enable automatic invocation
	4.6 Start the flow generator

	5 Remote Collection and Flow Storage
	5.1 Packing machine, part 1
	5.1.1 Install the software
	5.1.2 Customize and install rwflowpack
	5.1.3 Create an identifier for rwreceiver
	5.1.4 Create an identifier for rwsender
	5.1.5 Create keys and certificates for GnuTLS security

	5.2 Remote collection machine
	5.2.1 Install the software
	5.2.2 Customize and install flowcap
	5.2.3 Customize and install rwsender

	5.3 Packing machine, part 2
	5.3.1 Customize the rwreceiver.conf configuration file
	5.3.2 Test the rwreceiver.conf settings
	5.3.3 Enable automatic invocation of rwreceiver

	5.4 Remote storage machine
	5.4.1 Install the software
	5.4.2 Customize and install rwflowappend
	5.4.3 Customize and install rwreceiver

	5.5 Packing machine, part 3
	5.5.1 Customize the rwsender.conf configuration file
	5.5.2 Test the rwsender.conf settings
	5.5.3 Enable automatic invocation of rwsender

	5.6 Start the complete system
	5.6.1 Start transfer between collection and packing machines
	5.6.2 Start transfer from packing to storage machines
	5.6.3 Start rwflowappend on each storage machine
	5.6.4 Start rwflowpack on the packing machine
	5.6.5 Start flowcap on each collection machine
	5.6.6 Start flow generator

	6 Remote Data Collection
	6.1 Packing machine, part 1
	6.1.1 Install the software
	6.1.2 Customize the rwflowpack.conf configuration file
	6.1.3 Create an identifier for rwreceiver

	6.2 Remote collection machine
	6.3 Packing machine, part 2
	6.4 Start the complete system

	7 Remote SiLK Flow Storage
	7.1 Packing machine, part 1
	7.1.1 Install the software
	7.1.2 Customize the rwflowpack.conf configuration file
	7.1.3 Create an identifier for rwsender

	7.2 Remote storage machine
	7.3 Packing machine, part 2
	7.4 Start the complete system

	8 Flow Generator Configuration
	8.1 Using the YAF Flow Sensor
	8.2 Configuring a router
	8.3 Configure the machine(s) receiving flows

	A Packing Logic Overview
	A.1 NetFlow primer
	A.2 IPFIX introduction
	A.3 Categorizing the flow
	A.3.1 Incoming vs. outgoing traffic
	A.3.2 Routed vs. non-routed traffic
	A.3.3 Routed-web traffic
	A.3.4 Routed-ICMP traffic
	A.3.5 Categorization summary

	A.4 Data Storage Hierarchy

	B Determining External Interfaces
	C Creating GnuTLS Certificates
	C.1 Creating the Certificate Authority
	C.2 Creating a program-specific certificate/key pair
	C.3 Creating a PKCS#12 file

	D License

